Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag Res ; : 734242X241237184, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686663

RESUMO

Sensor-based material flow monitoring allows for continuously high output qualities, through quality management and process control. The implementation in the waste management sector, however, is inhibited by the heterogeneity of waste and throughput fluctuations. In this study, challenges and possibilities of using different types of sensors in a lightweight packaging waste sorting plant are investigated. Three external sensors have been mounted on different positions in an Austrian sorting plant: one Light Detection and Ranging (LiDAR) sensor for monitoring the volume flow and two near-infrared (NIR) sensors for measuring the pixel-based material composition and occupation density. Additionally, the data of an existing sensor-based sorter (SBS) were evaluated. To predict the newly introduced parameter material-specific occupation density (MSOD) of multi-coloured polyethylene terephthalate (PET) preconcentrate, different machine learning models were evaluated. The results indicate that using SBS data for both monitoring of throughput fluctuations caused by different bag opener settings as well as monitoring the material composition is feasible, if the pre-set teach-in is suitable. The ridge regression model based on SBS was comparable (RMSE = 3.59 px%, R² = 0.57) to the one based on NIR and LiDAR (RMSE = 3.1 px%, R² = 0.68). The demonstrated feasibility of the implementation at plant scale highlights the opportunities of sensor-based material flow monitoring for the waste management sector and paves the way towards a more circular plastics economy.

2.
Waste Manag Res ; 37(8): 843-850, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31244383

RESUMO

In the project 'NEW-MINE' the use of sensor-based sorting machinery in the field of 'landfill mining' is investigated. Defilements pose a particular challenge in the treatment and sorting of plastics contained in landfills. For this reason, the effects of various pollutants caused by the interactions in the landfill body or the mechanical treatment steps in landfill mining are examined. In the following elaboration, the focus is on the influences of surface moisture and surface roughness of plastics on sensor-based sorting by means of near-infrared technology. Near-infrared radiation (NIR) in a wavelength range of 990 nm to 1500 nm has been used for the detection and classification of plastic particles. The experiments demonstrate that increased surface roughness reduces signal noise and thereby improves the classification of both spectrally similar and transparent plastics, but reduces the yield of low-softening plastics because their sliding speed on a sensor-based chute sorter varies as a result of the heating of the chute. Surface moisture causes the absorption of radiation from 1115 nm (high density polyethylene [HDPE], linear low density polyethylene [LLDPE], polyethylen terephthalate [PET] and polyvinylchloride [PVC]) or from 1230 nm (low density polyethylene [LDPE], polypropylene [PP] and thermoplastic polyurethane [TPU]) up to at least 1680 nm, which causes amplification or attenuation of various extremes in the derivative. However, the influence of surface moisture on the yield of plastics is usually very low and depends on the spectral differences between the different plastics.


Assuntos
Poluentes Ambientais , Plásticos , Polietileno , Cloreto de Polivinila
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA