Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 43(1): 77, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475864

RESUMO

BACKGROUND: The DNA damage response (DDR) is a physiological network preventing malignant transformation, e.g. by halting cell cycle progression upon DNA damage detection and promoting DNA repair. Glioblastoma are incurable primary tumors of the nervous system and DDR dysregulation contributes to acquired treatment resistance. Therefore, DDR targeting is a promising therapeutic anti-glioma strategy. Here, we investigated Ataxia telangiectasia and Rad3 related (ATR) inhibition (ATRi) and functionally-instructed combination therapies involving ATRi in experimental glioma. METHODS: We used acute cytotoxicity to identify treatment efficacy as well as RNAseq and DigiWest protein profiling to characterize ATRi-induced modulations within the molecular network in glioma cells. Genome-wide CRISPR/Cas9 functional genomic screens and subsequent validation with functionally-instructed compounds and selected shRNA-based silencing were employed to discover and investigate molecular targets modifying response to ATRi in glioma cell lines in vitro, in primary cultures ex vivo and in zebrafish and murine models in vivo. RESULTS: ATRi monotherapy displays anti-glioma efficacy in vitro and ex vivo and modulates the molecular network. We discovered molecular targets by genome-wide CRISPR/Cas9 loss-of-function and activation screens that enhance therapeutic ATRi effects. We validated selected druggable targets by a customized drug library and functional assays in vitro, ex vivo and in vivo. CONCLUSION: In conclusion, our study leads to the identification of novel combination therapies involving ATRi that could inform future preclinical studies and early phase clinical trials.


Assuntos
Glioma , Peixe-Zebra , Camundongos , Animais , Linhagem Celular Tumoral , Reparo do DNA , Dano ao DNA , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
2.
J Exp Clin Cancer Res ; 42(1): 210, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596623

RESUMO

Despite tremendous progress in deciphering breast cancer at the genomic level, the pronounced intra- and intertumoral heterogeneity remains a major obstacle to the advancement of novel and more effective treatment approaches. Frequent treatment failure and the development of treatment resistance highlight the need for patient-derived tumor models that reflect the individual tumors of breast cancer patients and allow a comprehensive analyses and parallel functional validation of individualized and therapeutically targetable vulnerabilities in protein signal transduction pathways. Here, we introduce the generation and application of breast cancer patient-derived 3D microtumors (BC-PDMs). Residual fresh tumor tissue specimens were collected from n = 102 patients diagnosed with breast cancer and subjected to BC-PDM isolation. BC-PDMs retained histopathological characteristics, and extracellular matrix (ECM) components together with key protein signaling pathway signatures of the corresponding primary tumor tissue. Accordingly, BC-PDMs reflect the inter- and intratumoral heterogeneity of breast cancer and its key signal transduction properties. DigiWest®-based protein expression profiling of identified treatment responder and non-responder BC-PDMs enabled the identification of potential resistance and sensitivity markers of individual drug treatments, including markers previously associated with treatment response and yet undescribed proteins. The combination of individualized drug testing with comprehensive protein profiling analyses of BC-PDMs may provide a valuable complement for personalized treatment stratification and response prediction for breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Mama , Genômica , Transdução de Sinais
3.
Stem Cell Res ; 66: 102988, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36528016

RESUMO

Invasive lobular carcinoma (ILC) is a distinct type of breast cancer and is accounting up to 10-15 % of all mammary carcinomas showing a pronounced increase in incidence rates over the last two decades. We generated three induced pluripotent stem cell (iPSC) lines from CD34+ progenitor cells isolated from a mammary carcinoma patient diagnosed with ILC. Here, we describe the characterization of the iPSCs by array-based comparative genomic hybridization (array CGH), immunocytochemistry, flow cytometry, reverse transcriptase polymerase chain reaction and directed in vitro differentiation. The iPSC lines will find application in the field of breast cancer research.


Assuntos
Neoplasias da Mama , Carcinoma Lobular , Células-Tronco Pluripotentes Induzidas , Feminino , Humanos , Idoso de 80 Anos ou mais , Carcinoma Lobular/genética , Carcinoma Lobular/metabolismo , Carcinoma Lobular/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Hibridização Genômica Comparativa , Neoplasias da Mama/patologia , Diferenciação Celular/genética
4.
Cancers (Basel) ; 14(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36139700

RESUMO

In cancer, the complex interplay between tumor cells and the tumor microenvironment results in the modulation of signaling processes. By assessing the expression of a multitude of proteins and protein variants in cancer tissue, wide-ranging information on signaling pathway activation and the status of the immunological landscape is obtainable and may provide viable information on the treatment response. Archived breast cancer tissues from a cohort of 84 patients (no adjuvant therapy) were analyzed by high-throughput Western blotting, and the expression of 150 proteins covering central cancer pathways and immune cell markers was examined. By assessing CD8α, CD11c, CD16 and CD68 expression, immune cell infiltration was determined and revealed a strong correlation between event-free patient survival and the infiltration of immune cells. The presence of tumor-infiltrating lymphocytes was linked to the pronounced activation of the Jak/Stat signaling pathway and apoptotic processes. The elevated phosphorylation of PPARγ (pS112) in non-immune-infiltrated tumors suggests a novel immune evasion mechanism in breast cancer characterized by increased PPARγ phosphorylation. Multiplexed immune cell marker assessment and the protein profiling of tumor tissue provide functional signaling data facilitating breast cancer patient stratification.

5.
Stem Cell Res ; 64: 102902, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36055119

RESUMO

CD34+ cells were isolated from peripheral blood of a breast cancer patient. By the introduction of five integration-free episomal vectors, the CD34+ cells were successfully reprogrammed and resulted in four iPSC clones. Flow Cytometry, reverse transcriptase PCR and immunocytochemistry confirm a robust expression of pluripotency factors and the concomitant loss of exogenous reprogramming plasmids. The maintenance of genomic integrity was confirmed by array-based comparative genomic hybridization and iPSCs harbored the capacity to differentiate into all three germ layers. Here, we present the generation and characterization of four iPSC lines that will find application in the field of breast cancer research.


Assuntos
Neoplasias da Mama , Carcinoma , Células-Tronco Pluripotentes Induzidas , Humanos , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo , Reprogramação Celular , Hibridização Genômica Comparativa , Antígenos CD34/metabolismo , Carcinoma/metabolismo , Diferenciação Celular/genética
6.
Urologie ; 61(7): 739-744, 2022 Jul.
Artigo em Alemão | MEDLINE | ID: mdl-35925246

RESUMO

BACKGROUND: In view of continued development of new oncological approaches, there is a high demand for personalized tumor therapy. However, fast and effective functional platforms for the prediction of individual patient response to drug therapy are largely unavailable. Various promising approaches have already been described for three-dimensional cell culture models, which represent cellular complexity and almost identical structures of the original tumor tissue. OBJECTIVES: Based on a case report, we show the capability and results of a novel test system using patient-derived microtumors (PDMs) and autologous tumor-infiltrating lymphocytes (TILs) for the prediction of response to cancer therapy. METHODS: We established PDMs and TILs from primary tumor tissue of a renal cell carcinoma metastasis. Using immunohistochemistry and multiplex florescence-activated cell sorting (FACS ) analyses, the PDMs and TILs were characterized regarding to histology and immunophenotype. Tumor-specific cytotoxicity of standard of care and investigational compounds were assessed. The results were compared to the patient's individual in vivo response to therapy. CONCLUSION: The cytotoxicity assay of PDMs and TILs showed a significant therapeutic response (p = 0.0004) to therapy with a programmed cell death protein 1 (PD-1) inhibitor and lenvatinib compared to the control. The in vitro results correlated positively with the in vivo data. In the future, patient-derived models could predict response to cancer therapy and may help to optimize treatment decision-making.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/tratamento farmacológico , Humanos , Imuno-Histoquímica , Neoplasias Renais/tratamento farmacológico , Linfócitos do Interstício Tumoral
7.
Front Oncol ; 12: 889789, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800063

RESUMO

Renal cell carcinoma (RCC) is a kidney cancer with an onset mainly during the sixth or seventh decade of the patient's life. Patients with advanced, metastasized RCC have a poor prognosis. The majority of patients develop treatment resistance towards Standard of Care (SoC) drugs within months. Tyrosine kinase inhibitors (TKIs) are the backbone of first-line therapy and have been partnered with an immune checkpoint inhibitor (ICI) recently. Despite the most recent progress, the development of novel therapies targeting acquired TKI resistance mechanisms in advanced and metastatic RCC remains a high medical need. Preclinical models with high translational relevance can significantly support the development of novel personalized therapies. It has been demonstrated that patient-derived xenograft (PDX) models represent an essential tool for the preclinical evaluation of novel targeted therapies and their combinations. In the present project, we established and molecularly characterized a comprehensive panel of subcutaneous RCC PDX models with well-conserved molecular and pathological features over multiple passages. Drug screening towards four SoC drugs targeting the vascular endothelial growth factor (VEGF) and PI3K/mTOR pathway revealed individual and heterogeneous response profiles in those models, very similar to observations in patients. As unique features, our cohort includes PDX models from metastatic disease and multi-tumor regions from one patient, allowing extended studies on intra-tumor heterogeneity (ITH). The PDX models are further used as basis for developing corresponding in vitro cell culture models enabling advanced high-throughput drug screening in a personalized context. PDX models were subjected to next-generation sequencing (NGS). Characterization of cancer-relevant features including driver mutations or cellular processes was performed using mutational and gene expression data in order to identify potential biomarker or treatment targets in RCC. In summary, we report a newly established and molecularly characterized panel of RCC PDX models with high relevance for translational preclinical research.

8.
Cancers (Basel) ; 14(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35740561

RESUMO

In light of the frequent development of therapeutic resistance in cancer treatment, there is a strong need for personalized model systems representing patient tumor heterogeneity, while enabling parallel drug testing and identification of appropriate treatment responses in individual patients. Using ovarian cancer as a prime example of a heterogeneous tumor disease, we developed a 3D preclinical tumor model comprised of patient-derived microtumors (PDM) and autologous tumor-infiltrating lymphocytes (TILs) to identify individual treatment vulnerabilities and validate chemo-, immuno- and targeted therapy efficacies. Enzymatic digestion of primary ovarian cancer tissue and cultivation in defined serum-free media allowed rapid and efficient recovery of PDM, while preserving histopathological features of corresponding patient tumor tissue. Reverse-phase protein array (RPPA)-analyses of >110 total and phospho-proteins enabled the identification of patient-specific sensitivities to standard, platinum-based therapy and thereby the prediction of potential treatment-responders. Co-cultures of PDM and autologous TILs for individual efficacy testing of immune checkpoint inhibitor treatment demonstrated patient-specific enhancement of cytotoxic TIL activity by this therapeutic approach. Combining protein pathway analysis and drug efficacy testing of PDM enables drug mode-of-action analyses and therapeutic sensitivity prediction within a clinically relevant time frame after surgery. Follow-up studies in larger cohorts are currently under way to further evaluate the applicability of this platform to support clinical decision making.

9.
Clin Transl Med ; 12(6): e883, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35678045

RESUMO

BACKGROUND: The metabolic enzyme nicotinamide-N-methyltransferase (NNMT) is highly expressed in various cancer entities, suggesting tumour-promoting functions. We systematically investigated NNMT expression and its metabolic interactions in clear cell renal cell carcinoma (ccRCC), a prominent RCC subtype with metabolic alterations, to elucidate its role as a drug target. METHODS: NNMT expression was assessed in primary ccRCC (n = 134), non-tumour tissue and ccRCC-derived metastases (n = 145) by microarray analysis and/or immunohistochemistry. Findings were validated in The Cancer Genome Atlas (kidney renal clear cell carcinoma [KIRC], n = 452) and by single-cell analysis. Expression was correlated with clinicopathological data and survival. Metabolic alterations in NNMT-depleted cells were assessed by nontargeted/targeted metabolomics and extracellular flux analysis. The NNMT inhibitor (NNMTi) alone and in combination with the inhibitor 2-deoxy-D-glucose for glycolysis and BPTES (bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl-sulfide) for glutamine metabolism was investigated in RCC cell lines (786-O, A498) and in two 2D ccRCC-derived primary cultures and three 3D ccRCC air-liquid interface models. RESULTS: NNMT protein was overexpressed in primary ccRCC (p = 1.32 × 10-16 ) and ccRCC-derived metastases (p = 3.92 × 10-20 ), irrespective of metastatic location, versus non-tumour tissue. Single-cell data showed predominant NNMT expression in ccRCC and not in the tumour microenvironment. High NNMT expression in primary ccRCC correlated with worse survival in independent cohorts (primary RCC-hazard ratio [HR] = 4.3, 95% confidence interval [CI]: 1.5-12.4; KIRC-HR = 3.3, 95% CI: 2.0-5.4). NNMT depletion leads to intracellular glutamine accumulation, with negative effects on mitochondrial function and cell survival, while not affecting glycolysis or glutathione metabolism. At the gene level, NNMT-depleted cells upregulate glycolysis, oxidative phosphorylation and apoptosis pathways. NNMTi alone or in combination with 2-deoxy-D-glucose and BPTES resulted in inhibition of cell viability in ccRCC cell lines and primary tumour and metastasis-derived models. In two out of three patient-derived ccRCC air-liquid interface models, NNMTi treatment induced cytotoxicity. CONCLUSIONS: Since efficient glutamine utilisation, which is essential for ccRCC tumours, depends on NNMT, small-molecule NNMT inhibitors provide a novel therapeutic strategy for ccRCC and act as sensitizers for combination therapies.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Desoxiglucose , Glucose , Glutamina , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Niacinamida/farmacologia , Microambiente Tumoral
10.
EXCLI J ; 21: 144-161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35145369

RESUMO

Oxygen plays a fundamental role in cellular energy metabolism, differentiation and cell biology in general. Consequently, in vitro oxygen sensing can be used to assess cell vitality and detect specific mechanisms of toxicity. In 2D in vitro models currently used, the oxygen supply provided by diffusion is generally too low, especially for cells having a high oxygen demand. In organ-on-chip systems, a more physiologic oxygen supply can be generated by establishing unidirectional perfusion. We established oxygen sensors in an easy-to-use and parallelized organ-on-chip system. We demonstrated the applicability of this system by analyzing the influence of fructose (40 mM, 80 mM), ammonium chloride (100 mM) and Na-diclofenac (50 µM, 150 µM, 450 µM, 1500 µM) on primary human hepatocytes (PHH). Fructose treatment for two hours showed an immediate drop of oxygen consumption (OC) with subsequent increase to nearly initial levels. Treatment with 80 mM glucose, 20 mM lactate or 20 mM glycerol did not result in any changes in OC which demonstrates a specific effect of fructose. Application of ammonium chloride for two hours did not show any immediate effects on OC, but qualitatively changed the cellular response to FCCP treatment. Na-diclofenac treatment for 24 hours led to a decrease of the maximal respiration and reserve capacity. We also demonstrated the stability of our system by repeatedly treating cells with 40 mM fructose, which led to similar cell responses on the same day as well as on subsequent days. In conclusion, our system enables in depth analysis of cellular respiration after substrate treatment in an unidirectional perfused organ-on-chip system.

11.
Biosensors (Basel) ; 11(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34562904

RESUMO

Endothelial and epithelial cellular barriers play a vital role in the selective transport of solutes and other molecules. The properties and function of these barriers are often affected in case of inflammation and disease. Modelling cellular barriers in vitro can greatly facilitate studies of inflammation, disease mechanisms and progression, and in addition, can be exploited for drug screening and discovery. Here, we report on a parallelizable microfluidic platform in a multiwell plate format with ten independent cell culture chambers to support the modelling of cellular barriers co-cultured with 3D tumor spheroids. The microfluidic platform was fabricated by microinjection molding. Electrodes integrated into the chip in combination with a FT-impedance measurement system enabled transepithelial/transendothelial electrical resistance (TEER) measurements to rapidly assess real-time barrier tightness. The fluidic layout supports the tubeless and parallelized operation of up to ten distinct cultures under continuous unidirectional flow/perfusion. The capabilities of the system were demonstrated with a co-culture of 3D tumor spheroids and cellular barriers showing the growth and interaction of HT29 spheroids with a cellular barrier of MDCK cells.


Assuntos
Técnicas Analíticas Microfluídicas , Técnicas de Cultura de Células , Avaliação Pré-Clínica de Medicamentos , Impedância Elétrica , Eletrodos , Células Epiteliais , Humanos , Microfluídica , Neoplasias/diagnóstico
12.
Cancers (Basel) ; 13(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063518

RESUMO

Glioblastoma is an aggressive primary tumor of the central nervous system. Targeting the immunosuppressive glioblastoma-associated microenvironment is an interesting therapeutic approach. Tumor-associated macrophages represent an abundant population of tumor-infiltrating host cells with tumor-promoting features. The colony stimulating factor-1/ colony stimulating factor-1 receptor (CSF-1/CSF1R) axis plays an important role for macrophage differentiation and survival. We thus aimed at investigating the antiglioma activity of CSF1R inhibition alone or in combination with blockade of programmed death (PD) 1. We investigated combination treatments of anti-CSF1R alone or in combination with anti-PD1 antibodies in an orthotopic syngeneic glioma mouse model, evaluated post-treatment effects and assessed treatment-induced cytotoxicity in a coculture model of patient-derived microtumors (PDM) and autologous tumor-infiltrating lymphocytes (TILs) ex vivo. Anti-CSF1R monotherapy increased the latency until the onset of neurological symptoms. Combinations of anti-CSF1R and anti-PD1 antibodies led to longterm survivors in vivo. Furthermore, we observed treatment-induced cytotoxicity of combined anti-CSF1R and anti-PD1 treatment in the PDM/TILs cocultures ex vivo. Our results identify CSF1R as a promising therapeutic target for glioblastoma, potentially in combination with PD1 inhibition.

13.
Stem Cell Res ; 54: 102427, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34139596

RESUMO

Peripheral-blood derived CD34+ hematopoietic stem and progenitor cells were isolated from a 49-year old male donor and were successfully reprogrammed into human induced pluripotent stem cells (hiPSCs) using integration-free episomal vectors. The hiPSC line exhibited a typical stem cell-like morphology and endogenously expressed several pluripotency markers by concomitant loss of exogenous reprogramming vectors. Genomic integrity was confirmed by microarray-based comparative genomic hybridization (array CGH). Further analysis affirmed the ability of this hiPSC line to differentiate into all three germ layers. Thus, the reported cell line may serve as a healthy control for disease modeling.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Reprogramação Celular , Hibridização Genômica Comparativa , Humanos , Leucócitos Mononucleares , Masculino , Pessoa de Meia-Idade
14.
Lab Chip ; 20(16): 2911-2926, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32662810

RESUMO

HepaChip microplate (HepaChip-MP) is a microfluidic platform comprised of 24 independent culture chambers with continuous, unidirectional perfusion. In the HepaChip-MP, an automated dielectrophoresis process selectively assembles viable cells into elongated micro tissues. Freshly isolated primary human hepatocytes (PHH) and primary human liver endothelial cells (HuLEC) were successfully assembled as cocultures aiming to mimic the liver sinusoid. Minimal quantities of primary human cells are required to establish micro tissues in the HepaChip-MP. Metabolic function including induction of CYP enzymes in PHH was successfully measured demonstrating a high degree of metabolic activity of cells in HepaChip-MP cultures and sufficient sensitivity of LC-MS analysis even for the relatively small number of cells per chamber. Further, parallelization realized in HepaChip-MP enabled the acquisition of dose-response toxicity data of diclofenac with a single device. Several unique technical features should enable a widespread application of this in vitro model. We have demonstrated fully automated preparation of cell cultures in HepaChip-MP using a pipetting robot. The tubeless unidirectional perfusion system based on gravity-driven flow can be operated within a standard incubator system. Overall, the system readily integrates in workflows common in cell culture labs. Further research will be directed towards optimization of media composition to further extend culture lifetime and study oxygen gradients and their effect on zonation within the sinusoid-like microorgans. In summary, we have established a novel parallelized and scalable microfluidic in vitro liver model showing hepatocyte function and anticipate future in-depth studies of liver biology and applications in pre-clinical drug development.


Assuntos
Células Endoteliais , Fígado , Técnicas de Cultura de Células , Técnicas de Cocultura , Hepatócitos , Humanos
15.
Nat Commun ; 9(1): 930, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500346

RESUMO

Dense fluorophore labeling without compromising the biological target is crucial for genuine super-resolution microscopy. Here we introduce a broadly applicable labeling strategy for fixed and living cells utilizing a short peptide tag-specific nanobody (BC2-tag/bivBC2-Nb). BC2-tagging of ectopically introduced or endogenous proteins does not interfere with the examined structures and bivBC2-Nb staining results in a close-grained fluorophore labeling with minimal linkage errors. This allowed us to perform high-quality dSTORM imaging of various targets in mammalian and yeast cells. We expect that this versatile strategy will render many more demanding cellular targets amenable to dSTORM imaging.


Assuntos
Imagem Individual de Molécula/métodos , Anticorpos de Domínio Único , Coloração e Rotulagem/métodos , Células A549 , Células HeLa , Humanos , Schizosaccharomyces
16.
Sci Rep ; 7(1): 1325, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28465513

RESUMO

The integration of microfluidics and cell biology has reached a significant milestone with the development of "organ-on-chips", smart technological platforms that, once applied to the study of human diseases, such as cancer, might ultimately contribute to design personalised treatments and hence improve health outcomes. This paper reports that the combination of microfluidics and dielectrophoresis (DEP) allows to culture different pancreatic ductal adenocarcinoma (PDAC) human cell lines into a cyclic olefin polymer (COP) chamber (HepaChip®), enriched by the extracellular matrix (ECM) protein collagen. We show that PDAC cells cultured into the HepaChip® (1) are vital and grow, provided they properly attach to collagen; (2) show morphological appearance and growth characteristics closer to those of cells grown as spheroids than as classical 2 dimensional (2D) in vitro cultures. Finally, preliminary experiments show that PDAC cells respond to high doses of Cisplatin perfused through the chip. Overall, the present microfluidic platform could be exploited in the future for a personalised approach to PDAC.


Assuntos
Carcinoma Ductal Pancreático/fisiopatologia , Técnicas de Cultura de Células , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Neoplasias Pancreáticas/fisiopatologia , Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Colágeno/farmacologia , Cicloparafinas/farmacologia , Humanos , Técnicas In Vitro , Técnicas Analíticas Microfluídicas/instrumentação , Neoplasias Pancreáticas/patologia
17.
Oncotarget ; 7(45): 73725-73738, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27713160

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a low overall survival rate, which is approximately 20% during the first year and decreases to less than 6% within five years of the disease. This is due to premature dissemination accompanied by a lack of disease-specific symptoms during the initial stages. Additionally, to date there are no biomarkers for an early prognosis available.A growing number of studies indicate that epithelial to mesenchymal transition (EMT), triggered by WNT-, TGF-ß- and other signaling pathways is crucial for the initiation of the metastatic process in PDAC. Here we show, that BCL9L is up-regulated in PDAC cell lines and patient tissue compared to non-cancer controls. RNAi-induced BCL9L knockdown negatively affected proliferation, migration and invasion of pancreatic cancer cells. On a molecular basis, BCL9L depletion provoked an increment of E-cadherin protein levels, with concomitant increase of ß-catenin retention at the plasma membrane. This is linked to the induction of a strong epithelial phenotype in pancreatic cancer cells upon BCL9L knockdown even in the presence of the EMT-inducer TGF-ß. Finally, xenograft mouse models of pancreatic cancer revealed a highly significant reduction in the number of liver metastases upon BCL9L knockdown. Taken together, our findings underline the key importance of BCL9L for EMT and thus progression and metastasis of pancreatic cancer cells. Direct targeting of this protein might be a valuable approach to effectively antagonize invasion and metastasis of PDAC.


Assuntos
Transição Epitelial-Mesenquimal/genética , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Junções Aderentes/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular/genética , Proliferação de Células , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Camundongos , Metástase Neoplásica , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/patologia , Transporte Proteico , Fatores de Transcrição , Transcrição Gênica , Fator de Crescimento Transformador beta/farmacologia , Regulação para Cima , beta Catenina/genética , beta Catenina/metabolismo
18.
Development ; 142(10): 1879-84, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25968318

RESUMO

Chromobodies are intracellular nanoprobes that combine the specificity of antibodies with the convenience of live fluorescence imaging in a flexible, DNA-encoded reagent. Here, we present the first application of this technique to an intact living vertebrate organism. We generated zebrafish lines expressing chromobodies that trace the major cytoskeletal component actin and the cell cycle marker PCNA with spatial and temporal specificity. Using these chromobodies, we captured full localization dynamics of the endogenous antigens in different cell types and at different stages of development. For the first time, the chromobody technology enables live imaging of endogenous subcellular structures in an animal, with the remarkable advantage of avoiding target protein overexpression or tagging. In combination with improved chromobody selection systems, we anticipate a rapid adaptation of this technique to new intracellular antigens and model organisms, allowing the faithful description of cellular and molecular processes in their dynamic state.


Assuntos
Diagnóstico por Imagem/métodos , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Actinas/metabolismo , Animais , Ciclo Celular/fisiologia , Anticorpos de Domínio Único
19.
Mol Biol Cell ; 20(12): 2856-63, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19369415

RESUMO

Previous studies showed that loss of the T-cell protein tyrosine phosphatase (TC-PTP) induces Rab4a-dependent recycling of the platelet-derived growth factor (PDGF) beta-receptor in mouse embryonic fibroblasts (MEFs). Here we identify protein kinase C (PKC) alpha as the critical signaling component that regulates the sorting of the PDGF beta-receptor at the early endosomes. Down-regulation of PKC abrogated receptor recycling by preventing the sorting of the activated receptor into EGFP-Rab4a positive domains on the early endosomes. This effect was mimicked by inhibition of PKCalpha, using myristoylated inhibitory peptides or by knockdown of PKCalpha with shRNAi. In wt MEFs, short-term preactivation of PKC by PMA caused a ligand-induced PDGF beta-receptor recycling that was dependent on Rab4a function. Together, these observations demonstrate that PKC activity is necessary for recycling of ligand-stimulated PDGF beta-receptor to occur. The sorting also required Rab4a function as it was prevented by expression of EGFP-Rab4aS22N. Preventing receptor sorting into recycling endosomes increased the rate of receptor degradation, indicating that the sorting of activated receptors at early endosomes directly regulates the duration of receptor signaling. Activation of PKC through the LPA receptor also induced PDGF beta-receptor recycling and potentiated the chemotactic response to PDGF-BB. Taken together, our present findings indicate that sorting of PDGF beta-receptors on early endosomes is regulated by sequential activation of PKCalpha and Rab4a and that this sorting step could constitute a point of cross-talk with other receptors.


Assuntos
Endocitose , Proteína Quinase C-alfa/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas rab4 de Ligação ao GTP/metabolismo , Animais , Becaplermina , Movimento Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/enzimologia , Ativação Enzimática/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Células HeLa , Humanos , Lisofosfolipídeos/farmacologia , Camundongos , Microscopia Confocal , Fator de Crescimento Derivado de Plaquetas/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-sis , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
20.
Gastroenterology ; 132(5): 1820-33, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17484877

RESUMO

BACKGROUND & AIMS: Helicobacter pylori colonizes the human gastric mucosa of >50% of the world's population. Most of the patients have no overt clinical symptoms. However, the infection is invariably associated with the development of active chronic gastritis, leading in some cases to the development of peptic ulcer disease, distal gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma. In contrast to most other pathogens, infection with H pylori persists lifelong, but reasons for the persistence remain obscure. CD4-positive T cells are crucial for bacterial elimination but are inhibited by H pylori. We aimed to identify the factor responsible for suppression of T-cell response and characterize this inhibitory effect on a cellular and molecular level. METHODS: Using size-exclusion chromatography, sodium dodecyl sulfate/polyacrylamide gel electrophoresis, and a spectrophotometric enzyme assay, we identified the secreted gamma-glutamyl transpeptidase of H pylori (HPGGT) as the factor responsible for inhibition of T-cell proliferation. RESULTS: Mutagenesis of HPGGT in different H pylori strains completely abrogated this inhibitory effect. Recombinantly expressed HPGGT protein showed full antiproliferative activity. Site-directed mutagenesis and application of the GGT inhibitor acivicin revealed that inhibition of T cells depends on catalytic activity of HPGGT. Cell cycle analysis of human T cells indicated that HPGGT was necessary and sufficient to induce G(1) arrest. Reduced levels of c-Myc and phosphorylated c-Raf protein suggest the disruption of Ras-dependent signaling by HPGGT. CONCLUSIONS: GGT is a novel immunosuppressive factor of H pylori inhibiting T-cell proliferation by induction of a cell cycle arrest in the G(1) phase.


Assuntos
Apoptose/fisiologia , Proliferação de Células , Helicobacter pylori/enzimologia , Linfócitos T/citologia , gama-Glutamiltransferase/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Fase G1/fisiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Interferon gama/metabolismo , Interleucina-2/metabolismo , Mutação/genética , Proteínas Recombinantes , Transdução de Sinais/fisiologia , Linfócitos T/fisiologia , gama-Glutamiltransferase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...