Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Radiat Oncol ; 17(1): 94, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35549961

RESUMO

BACKGROUND AND PURPOSE: To assess the feasibility of postoperative stereotactic body radiation therapy (SBRT) for patients with hybrid implants consisting of carbon fiber reinforced polyetheretherketone and titanium (CFP-T) using CyberKnife. MATERIALS AND METHODS: All essential steps within a radiation therapy (RT) workflow were evaluated. First, the contouring process of target volumes and organs at risk (OAR) was done for patients with CFP-T implants. Second, after RT-planning, the accuracy of the calculated dose distributions was tested in a slab phantom and an anthropomorphic phantom using film dosimetry. As a third step, the accuracy of the mandatory image guided radiation therapy (IGRT) including automatic matching was assessed using the anthropomorphic phantom. For this goal, a standard quality assurance (QA) test was modified to carry out its IGRT part in presence of CFP-T implants. RESULTS: Using CFP-T implants, target volumes could precisely delineated. There was no need for compromising the contours to overcome artifact obstacles. Differences between measured and calculated dose values were below 11% for the slab phantom, and at least 95% of the voxels were within 5% dose difference. The comparisons for the anthropomorphic phantom showed a gamma-passing rate (5%, 1 mm) of at least 97%. Additionally the test results with and without CFP-T implants were comparable. No issues concerning the IGRT were detected. The modified machine QA test resulted in a targeting error of 0.71 mm, which corresponds to the results of the unmodified standard tests. CONCLUSION: Dose calculation and delivery of postoperative spine SBRT is feasible in proximity of CFP-T implants using a CyberKnife system.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Procedimentos Cirúrgicos Robóticos , Carbono , Estudos de Viabilidade , Humanos , Imagens de Fantasmas , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Titânio
2.
Int J Radiat Oncol Biol Phys ; 113(1): 214-227, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074434

RESUMO

PURPOSE: Our purpose was to investigate whether liver stereotactic body radiation therapy treatment planning can be harmonized across different treatment planning systems, delivery techniques, and institutions by using a specific prescription method and to minimize the knowledge gap concerning intersystem and interuser differences. We provide best practice guidelines for all used techniques. METHODS AND MATERIALS: A multiparametric specification of target dose (gross target volume [GTV]D50%, GTVD0.1cc, GTVV90%, planning target volume [PTV]V70%) with a prescription dose of GTVD50% = 3 × 20 Gy and organ-at-risk (OAR) limits were distributed with computed tomography and structure sets from 3 patients with liver metastases. Thirty-five institutions provided 132 treatment plans using different irradiation techniques. These plans were first analyzed for target and OAR doses. Four different renormalization methods were performed (PTVDmin, PTVD98%, PTVD2%, PTVDmax). The resulting 660 treatments plans were evaluated regarding target doses to study the effect of dose renormalization to different prescription methods. A relative scoring system was used for comparisons. RESULTS: GTVD50% prescription can be performed in all systems. Treatment plan harmonization was overall successful, with standard deviations for Dmax, PTVD98%, GTVD98%, and PTVDmean of 1.6, 3.3, 1.9, and 1.5 Gy, respectively. Primary analysis showed 55 major deviations from clinical goals in 132 plans, whereas in only <20% of deviations GTV/PTV dose was traded for meeting OAR limits. GTVD50% prescription produced the smallest deviation from target planning objectives and between techniques, followed by the PTVDmax, PTVD98%, PTVD2%, and PTVDmin prescription. Deviations were significant for all combinations but for the PTVDmax prescription compared with GTVD50% and PTVD98%. Based on the various dose prescription methods, all systems significantly differed from each other, whereas GTVD50% and PTVD98% prescription showed the least difference between the systems. CONCLUSIONS: This study showed the feasibility of harmonizing liver stereotactic body radiation therapy treatment plans across different treatment planning systems and delivery techniques when a sufficient set of clinical goals is given.


Assuntos
Neoplasias Hepáticas , Radiocirurgia , Radioterapia de Intensidade Modulada , Benchmarking , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
3.
Radiat Oncol ; 14(1): 217, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791365

RESUMO

BACKGROUND: In order to locate an arteriovenous malformation, typically, a digital subtraction angiography (DSA) is carried out. To use the DSA for target definition an accurate image registration between CT and DSA is required. Carrying out a non-invasive, frameless procedure, registration of the 2D-DSA images with the CT is critical. A new software prototype is enabling this frameless procedure. The aim of this work was to evaluate the prototype in terms of targeting accuracy and reliability based on phantom measurements as well as with the aid of patient data. In addition, the user's ability to recognize registration mismatches and quality was assessed. METHODS: Targeting accuracy was measured with a simple cubic, as well as with an anthropomorphic head phantom. Clearly defined academic targets within the phantoms were contoured on the CT. These reference structures were compared with the structures generated within the prototype. A similar approach was used with patient data, where the clinically contoured target served as the reference structure. An important error source decreasing the target accuracy comes from registration errors between CT and 2D-DSA. For that reason, the tools in BC provided to the user to check these registrations are very important. In order to check if the user is able to recognize registration errors, a set of different registration errors was introduced to the correctly registered CT and 2D-DSA image data sets of three different patients. Each of six different users rated the whole set of registrations within the prototype. RESULTS: The target accuracy of the prototype was found to be below 0.04 cm for the cubic phantom and below 0.05 cm for the anthropomorphic head phantom. The mean target accuracy for the 15 patient cases was found to be below 0.3 cm. In the registration verification part, almost all introduced registration errors above 1° or 0.1 cm were detected by the six users. Nevertheless, in order to quantify and categorize the possibility to detect mismatches in the registration process more data needs to be evaluated. CONCLUSION: Our study shows, that the prototype is a useful tool that has the potential to fill the gap towards a frameless procedure when treating AVMs with the aid of 2D-DSA images in radiosurgery. The target accuracy of the prototype is similar to other systems already established in clinical routine.


Assuntos
Angiografia Digital/métodos , Malformações Arteriovenosas/cirurgia , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imagens de Fantasmas , Radiocirurgia/métodos , Software , Malformações Arteriovenosas/diagnóstico por imagem , Malformações Arteriovenosas/patologia , Cabeça/diagnóstico por imagem , Humanos
4.
Rep Pract Oncol Radiother ; 24(4): 322-324, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31193944

RESUMO

Stereotactic body radiation therapy is an effective and safe treatment modality for bone metastasis which allows clinicians to accurately target lesions to high doses while minimizing dose to organs at risk. The commercially available CyberKnife® Xsight™ Spine Tracking System (Accuray, Inc., Sunnyvale, CA) tracks static skeletal structures and eliminates the need for implanted fiducial markers (FMs). However, the Xsight™ Spine Tracking system is not appropriate for bone metastases outside the spine, which are moving due to respiration and ,typically, FMs have to be implanted close to the lesion. These FMs will be used to track the dynamic target. For targets close to the surface, non-invasive fixation of the FMs to the patient's skin could be an option.

5.
J Appl Clin Med Phys ; 19(1): 243-249, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29125234

RESUMO

Compared to a conventional linear accelerator, the Cyberknife (CK) is a unique system with respect to radiation protection shielding and the variety and number of non-coplanar beams are two key components regarding this aspect. In this work, a framework to assess the direction distribution and modulation factor (MF) of clinically applied treatment beams of a CyberKnife M6 is developed. Database filtering options allow studying the influence of different parameters such as collimator types, treatment sites or different bunker sizes. A distribution of monitor units (MU) is generated by projecting treatment beams onto the walls, floor and ceiling of the CyberKnife bunker. This distribution is found to be highly heterogeneous and depending, among other parameters, on the bunker size. For our bunker design, 10%-13% of the MUs are delivered to the right and left wall, each. The floor receives more than 64% of the applied MUs, while the wall behind the patient's head is not hit by primary treatment beams. Between 0% and 5% of the total MUs are delivered to the wall at the patient's feet. This number highly depends on the treatment site, e.g., for extracranial patients no beams hit that wall. Collimator choice was found to have minor influence on the distribution of MUs. On the other hand, the MF depends on the collimator type as well as on the treatment site. The MFs (delivered MU/prescribed dose) for all treatments, all MLC treatments, cranial and extracranial treatments are 8.3, 6.4, 7.7, and 9.9 MU/cGy, respectively. The developed framework allows assessing and monitoring important parameters regarding radiation protection of a CK-M6 using the actually applied treatment beams. Furthermore, it enables evaluating different clinical and constructional situations using the filtering options.


Assuntos
Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação , Proteção Radiológica/métodos , Proteção Radiológica/normas , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Humanos , Dosagem Radioterapêutica , Estudos Retrospectivos , Fatores de Tempo
6.
Z Med Phys ; 24(2): 112-22, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24418323

RESUMO

PURPOSE: The range of patient setup errors in six dimensions detected in clinical routine for cranial as well as for extracranial treatments, were analyzed while performing linear accelerator based stereotactic treatments with frameless patient setup systems. Additionally, the need for re-verification of the patient setup for situations where couch rotations are involved was analyzed for patients treated in the cranial region. METHODS AND MATERIALS: A total of 2185 initial (i.e. after pre-positioning the patient with the infrared system but before image guidance) patient setup errors (1705 in the cranial and 480 in the extracranial region) obtained by using ExacTrac (BrainLAB AG, Feldkirchen, Germany) were analyzed. Additionally, the patient setup errors as a function of the couch rotation angle were obtained by analyzing 242 setup errors in the cranial region. Before the couch was rotated, the patient setup error was corrected at couch rotation angle 0° with the aid of image guidance and the six degrees of freedom (6DoF) couch. For both situations attainment rates for two different tolerances (tolerance A: ± 0.5mm, ± 0.5°; tolerance B: ± 1.0 mm, ± 1.0°) were calculated. RESULTS: The mean (± one standard deviation) initial patient setup errors for the cranial cases were -0.24 ± 1.21°, -0.23 ± 0.91° and -0.03 ± 1.07° for the pitch, roll and couch rotation axes and 0.10 ± 1.17 mm, 0.10 ± 1.62 mm and 0.11 ± 1.29 mm for the lateral, longitudinal and vertical axes, respectively. Attainment rate (all six axes simultaneously) for tolerance A was 0.6% and 13.1% for tolerance B, respectively. For the extracranial cases the corresponding values were -0.21 ± 0.95°, -0.05 ± 1.08° and -0.14 ± 1.02° for the pitch, roll and couch rotation axes and 0.15 ± 1.77 mm, 0.62 ± 1.94 mm and -0.40 ± 2.15 mm for the lateral, longitudinal and vertical axes. Attainment rate (all six axes simultaneously) for tolerance A was 0.0% and 3.1% for tolerance B, respectively. After initial setup correction and rotation of the couch to treatment position a re-correction has to be performed in 77.4% of all cases to fulfill tolerance A and in 15.6% of all cases to fulfill tolerance B. CONCLUSION: The analysis of the data shows that all six axes of a 6DoF couch are used extensively for patient setup in clinical routine. In order to fulfill high patient setup accuracies (e.g. for stereotactic treatments), a 6DoF couch is recommended. Moreover, re-verification of the patient setup after rotating the couch is required in clinical routine.


Assuntos
Artefatos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Posicionamento do Paciente/instrumentação , Posicionamento do Paciente/métodos , Radiocirurgia/métodos , Radioterapia Guiada por Imagem/métodos , Leitos , Humanos , Interpretação de Imagem Assistida por Computador/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Radiocirurgia/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
J Radiosurg SBRT ; 2(3): 209-216, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-29296363

RESUMO

We assessed the efficacy and the toxicity for pediatric craniopharyngioma patients of fractionated stereotactic radiotherapy (FSRT). Between May 2000 and May 2009, 9 patients (male to female ratio, 5:4) with craniopharyngiomas underwent FSRT (median dose, 54 Gy). Among the 9 patients, 6 received radiation therapy (RT) for recurrent tumors and 3 for residual disease as adjuvant therapy after incomplete surgery. Median tumor volume was 2.3 cm3 (range, 0.1-5.8). The median target coverage was 93.7% (range 79.3-99.8%). The median conformity index was 0.94 (range, 0.6-1.4). Dose to the hippocampal region was assessed for all patients.After a median follow-up of 62.5 months (range, 32-127)the treated volume decreased in size in four of eight patients (50%). One patient was lost to follow-up. Local control and survival rates at 3 years were 100% and there were no marginal relapses. One patient, with a chronic bilateral papillary oedema after surgery, visual defect deteriorated after FSRT to a complete hemianopsia. One male patient with normal pituitary function before FSRT presented with precocious puberty at the age of 7.4 years, 24 months after FSRT. Four patients (50%) were severely obese at their last visit. FSRT is a safe treatment option for craniopharyngioma after incomplete resection.

8.
Z Med Phys ; 21(2): 124-34, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21239148

RESUMO

Monte Carlo (MC) based dose calculations can compute dose distributions with an accuracy surpassing that of conventional algorithms used in radiotherapy, especially in regions of tissue inhomogeneities and surface discontinuities. The Swiss Monte Carlo Plan (SMCP) is a GUI-based framework for photon MC treatment planning (MCTP) interfaced to the Eclipse treatment planning system (TPS). As for any dose calculation algorithm, also the MCTP needs to be commissioned and validated before using the algorithm for clinical cases. Aim of this study is the investigation of a 6 MV beam for clinical situations within the framework of the SMCP. In this respect, all parts i.e. open fields and all the clinically available beam modifiers have to be configured so that the calculated dose distributions match the corresponding measurements. Dose distributions for the 6 MV beam were simulated in a water phantom using a phase space source above the beam modifiers. The VMC++ code was used for the radiation transport through the beam modifiers (jaws, wedges, block and multileaf collimator (MLC)) as well as for the calculation of the dose distributions within the phantom. The voxel size of the dose distributions was 2mm in all directions. The statistical uncertainty of the calculated dose distributions was below 0.4%. Simulated depth dose curves and dose profiles in terms of [Gy/MU] for static and dynamic fields were compared with the corresponding measurements using dose difference and γ analysis. For the dose difference criterion of ±1% of D(max) and the distance to agreement criterion of ±1 mm, the γ analysis showed an excellent agreement between measurements and simulations for all static open and MLC fields. The tuning of the density and the thickness for all hard wedges lead to an agreement with the corresponding measurements within 1% or 1mm. Similar results have been achieved for the block. For the validation of the tuned hard wedges, a very good agreement between calculated and measured dose distributions was achieved using a 1%/1mm criteria for the γ analysis. The calculated dose distributions of the enhanced dynamic wedges (10°, 15°, 20°, 25°, 30°, 45° and 60°) met the criteria of 1%/1mm when compared with the measurements for all situations considered. For the IMRT fields all compared measured dose values agreed with the calculated dose values within a 2% dose difference or within 1 mm distance. The SMCP has been successfully validated for a static and dynamic 6 MV photon beam, thus resulting in accurate dose calculations suitable for applications in clinical cases.


Assuntos
Método de Monte Carlo , Fótons/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Simulação por Computador , Humanos , Aceleradores de Partículas , Imagens de Fantasmas , Radiometria/estatística & dados numéricos , Dosagem Radioterapêutica , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...