Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910431

RESUMO

Cardiac muscle has the highest mitochondrial density of any human tissue, but mitochondrial dysfunction is not a recognized cause of isolated cardiomyopathy. Here, we determined that the rare mitofusin (MFN) 2 R400Q mutation is 15-20× over-represented in clinical cardiomyopathy, whereas this specific mutation is not reported as a cause of MFN2 mutant-induced peripheral neuropathy, Charcot-Marie-Tooth disease type 2A (CMT2A). Accordingly, we interrogated the enzymatic, biophysical, and functional characteristics of MFN2 Q400 versus wild-type and CMT2A-causing MFN2 mutants. All MFN2 mutants had impaired mitochondrial fusion, the canonical MFN2 function. Compared to MFN2 T105M that lacked catalytic GTPase activity and exhibited normal activation-induced changes in conformation, MFN2 R400Q and M376A had normal GTPase activity with impaired conformational shifting. MFN2 R400Q did not suppress mitochondrial motility, provoke mitochondrial depolarization, or dominantly suppress mitochondrial respiration like MFN2 T105M. By contrast to MFN2 T105M and M376A, MFN2 R400Q was uniquely defective in recruiting Parkin to mitochondria. CRISPR editing of the R400Q mutation into the mouse Mfn2 gene induced perinatal cardiomyopathy with no other organ involvement; knock-in of Mfn2 T105M or M376V did not affect the heart. RNA sequencing and metabolomics of cardiomyopathic Mfn2 Q/Q400 hearts revealed signature abnormalities recapitulating experimental mitophagic cardiomyopathy. Indeed, cultured cardiomyoblasts and in vivo cardiomyocytes expressing MFN2 Q400 had mitophagy defects with increased sensitivity to doxorubicin. MFN2 R400Q is the first known natural mitophagy-defective MFN2 mutant. Its unique profile of dysfunction evokes mitophagic cardiomyopathy, suggesting a mechanism for enrichment in clinical cardiomyopathy.


Mitochondria are organelles with an essential role in providing energy to the cells of the body. If damaged, they are repaired by fusing and exchanging contents with sister mitochondria in a process that requires mitofusin proteins. While mutations in the gene for mitofusin 2 have been linked to nerve damage, they do not appear to affect the heart ­ despite high concentrations of mitochondria in heart muscle cells. However, previous research showed that experimentally disrupting the programmed removal of mitochondria, a process also regulated by mitofusin 2, can cause heart muscle disease known as cardiomyopathy. This suggests that mutations affecting different mitofusin 2 roles might harm individual cell types in different ways. To investigate, Franco et al. carried out a genetic screen of people with cardiomyopathy, identifying a rare mitofusin 2 mutation, called R400Q, that was more common in this group. Experiments showed that R400Q caused cardiomyopathy in mice and affected mitochondrial repair and replacement, but not movement. By contrast, a mutation linked to Charcot-Marie-Tooth disease type 2A ­ which causes nerve damage ­ affected mitochondrial movement but not clearance, leading to nerve cell damage but not cardiomyopathy. This led Franco et al. to suggest that mitochondrial movement is central to nerve cell health, whereas mitochondrial repair and replacement plays an important role in cardiac development. Genetic cardiomyopathies affect around 1 in 500 people, but only half of the gene mutations responsible are known. These results suggest that mutations affecting mitochondrial quality control factors could be involved, highlighting a direction for future studies into modifiers of cardiomyopathy.


Assuntos
Cardiomiopatias , Doença de Charcot-Marie-Tooth , Gravidez , Feminino , Humanos , Camundongos , Animais , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Mutação , GTP Fosfo-Hidrolases/genética , Cardiomiopatias/genética , Doença de Charcot-Marie-Tooth/genética
2.
J Invest Dermatol ; 143(6): 1052-1061.e3, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36642403

RESUMO

Terminally differentiated keratinocytes are critical for epidermal function and are surrounded by involucrin (IVL). Increased IVL expression is associated with a near-selective sweep in European populations compared with those in Africa. This positive selection for increased IVL in the epidermis identifies human adaptation outside of Africa. The functional significance is unclear. We hypothesize that IVL modulates the environmentally sensitive vitamin D receptor (VDR) in the epidermis. We investigated VDR activity in Ivl‒/‒ and wild-type mice using vitamin D agonist (MC903) treatment and comprehensively determined the inflammatory response using single-cell RNA sequencing and associated skin microbiome changes using 16S bacterial phylotyping. VDR activity and target gene expression were reduced in Ivl‒/‒ mouse skin, with decreased MC903-mediated skin inflammation and significant reductions in CD4+ T cells, basophils, macrophages, monocytes, and type II basal keratinocytes and an increase in suprabasal keratinocytes. Coinciding with the dampened MC903-mediated inflammation, the skin microbiota of Ivl‒/‒ mice was more stable than that of the wild-type mice, which exhibited an MC903-responsive increase in Bacteroidetes and a decrease in Firmicutes. Together, our studies in Ivl‒/‒ mice identify a functional role for IVL to positively impact VDR activity and suggest an emerging IVL/VDR paradigm for adaptation in the human epidermis.


Assuntos
Epiderme , Receptores de Calcitriol , Camundongos , Humanos , Animais , Receptores de Calcitriol/metabolismo , Epiderme/metabolismo , Pele/metabolismo , Queratinócitos/metabolismo , Vitamina D/farmacologia , Vitamina D/metabolismo , Inflamação/metabolismo
3.
Nat Commun ; 12(1): 2557, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963188

RESUMO

The genetic modules that contribute to human evolution are poorly understood. Here we investigate positive selection in the Epidermal Differentiation Complex locus for skin barrier adaptation in diverse HapMap human populations (CEU, JPT/CHB, and YRI). Using Composite of Multiple Signals and iSAFE, we identify selective sweeps for LCE1A-SMCP and involucrin (IVL) haplotypes associated with human migration out-of-Africa, reaching near fixation in European populations. CEU-IVL is associated with increased IVL expression and a known epidermis-specific enhancer. CRISPR/Cas9 deletion of the orthologous mouse enhancer in vivo reveals a functional requirement for the enhancer to regulate Ivl expression in cis. Reporter assays confirm increased regulatory and additive enhancer effects of CEU-specific polymorphisms identified at predicted IRF1 and NFIC binding sites in the IVL enhancer (rs4845327) and its promoter (rs1854779). Together, our results identify a selective sweep for a cis regulatory module for CEU-IVL, highlighting human skin barrier evolution for increased IVL expression out-of-Africa.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica/genética , Precursores de Proteínas/genética , Pele/metabolismo , África , Alelos , Animais , Sistemas CRISPR-Cas , Cromatina/genética , Cromatina/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Bases de Dados Genéticas , Frequência do Gene , Haplótipos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Precursores de Proteínas/metabolismo , Locos de Características Quantitativas , RNA-Seq , Sequências Reguladoras de Ácido Nucleico
4.
Exp Dermatol ; 30(8): 1150-1155, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34008901

RESUMO

Atopic dermatitis (AD) is an inflammatory skin disorder affecting up to 20% of the paediatric population worldwide. AD patients commonly exhibit dry skin and pruritus and are at a higher risk for developing asthma as well as allergic rhinitis. Filaggrin loss-of-function variants are the most widely replicated genetic risk factor among >40 genes associated with AD susceptibility. The prevalence of AD has tripled in the past 30 years in industrial countries around the world. This urgent public health issue has prompted the field to more thoroughly investigate the mechanisms that underlie AD pathogenesis amidst environmental exposures. Epigenetics is the study of heritable, yet reversible, modifications to the genome that affect gene expression. The past decade has seen an emergence of exciting studies identifying a role for epigenetic regulation associated with AD and at the interface of environmental factors. Such epigenetic studies have been empowered by sequencing technologies and human genome variation and epigenome maps. miRNAs that post-transcriptionally modify gene expression and circRNAs have also been discovered to be associated with AD. Here, we review our current understanding of epigenetics associated with atopic dermatitis. We discuss studies identifying distinct DNA methylation changes in keratinocytes and T cells, eQTLs as DNA methylation switches that impact gene expression, and histone modification changes associated with AD-related microbial dysbiosis. We further highlight the need for integrative and collaborative analyses to elucidate the impact of these epigenetic findings as potential drivers for AD pathogenesis and the translation of this new knowledge to develop newer targeted treatments.


Assuntos
Dermatite Atópica/genética , Epigênese Genética , Predisposição Genética para Doença , Metilação de DNA/genética , Histonas/genética , Humanos , MicroRNAs/genética
5.
Genet Med ; 21(4): 972-981, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287923

RESUMO

PURPOSE: Following automated variant calling, manual review of aligned read sequences is required to identify a high-quality list of somatic variants. Despite widespread use in analyzing sequence data, methods to standardize manual review have not been described, resulting in high inter- and intralab variability. METHODS: This manual review standard operating procedure (SOP) consists of methods to annotate variants with four different calls and 19 tags. The calls indicate a reviewer's confidence in each variant and the tags indicate commonly observed sequencing patterns and artifacts that inform the manual review call. Four individuals were asked to classify variants prior to, and after, reading the SOP and accuracy was assessed by comparing reviewer calls with orthogonal validation sequencing. RESULTS: After reading the SOP, average accuracy in somatic variant identification increased by 16.7% (p value = 0.0298) and average interreviewer agreement increased by 12.7% (p value < 0.001). Manual review conducted after reading the SOP did not significantly increase reviewer time. CONCLUSION: This SOP supports and enhances manual somatic variant detection by improving reviewer accuracy while reducing the interreviewer variability for variant calling and annotation.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/normas , Mutação/genética , Neoplasias/genética , Software , Algoritmos , Humanos , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único/genética , Alinhamento de Sequência
6.
Biomed Res Int ; 2013: 125492, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24369527

RESUMO

We recently reported a novel form of BMP2, designated nBMP2, which is translated from an alternative downstream start codon and is localized to the nucleus rather than secreted from the cell. To examine the function of nBMP2 in the nucleus, we engineered a gene-targeted mutant mouse model (nBmp2NLS(tm)) in which nBMP2 cannot be translocated to the nucleus. Immunohistochemistry demonstrated the presence of nBMP2 staining in the myonuclei of wild type but not mutant skeletal muscle. The nBmp2NLS(tm) mouse exhibits altered function of skeletal muscle as demonstrated by a significant increase in the time required for relaxation following a stimulated twitch contraction. Force frequency analysis showed elevated force production in mutant muscles compared to controls from 10 to 60 Hz stimulation frequency, consistent with the mutant muscle's reduced ability to relax between rapidly stimulated contractions. Muscle relaxation after contraction is mediated by the active transport of Ca(2+) from the cytoplasm to the sarcoplasmic reticulum by sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA), and enzyme activity assays revealed that SERCA activity in skeletal muscle from nBmp2NLS(tm) mice was reduced to approximately 80% of wild type. These results suggest that nBMP2 plays a role in the establishment or maintenance of intracellular Ca(2+) transport pathways in skeletal muscle.


Assuntos
Proteína Morfogenética Óssea 2/genética , Sinalização do Cálcio/genética , Relaxamento Muscular/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Cálcio/metabolismo , Camundongos , Músculo Esquelético/fisiologia , Mutação , Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...