Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 481(7): 515-545, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38572758

RESUMO

Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.


Assuntos
Peptídeo Hidrolases , Ubiquitina , Humanos , Ubiquitina/genética , Ubiquitina/metabolismo , Peptídeo Hidrolases/metabolismo , Ubiquitinação , Processamento de Proteína Pós-Traducional , Ubiquitinas/genética , Ubiquitinas/metabolismo , Dano ao DNA , Endopeptidases/metabolismo , Instabilidade Genômica
2.
Nucleic Acids Res ; 50(8): 4732-4754, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35420136

RESUMO

SUMOylation is critical for numerous cellular signalling pathways, including the maintenance of genome integrity via the repair of DNA double-strand breaks (DSBs). If misrepaired, DSBs can lead to cancer, neurodegeneration, immunodeficiency and premature ageing. Using systematic human proteome microarray screening combined with widely applicable carbene footprinting, genetic code expansion and high-resolution structural profiling, we define two non-conventional and topology-selective SUMO2-binding regions on XRCC4, a DNA repair protein important for DSB repair by non-homologous end-joining (NHEJ). Mechanistically, the interaction of SUMO2 and XRCC4 is incompatible with XRCC4 binding to three other proteins important for NHEJ-mediated DSB repair. These findings are consistent with SUMO2 forming a redundant NHEJ layer with the potential to regulate different NHEJ complexes at distinct levels including, but not limited to, XRCC4 interactions with XLF, LIG4 and IFFO1. Regulation of NHEJ is not only relevant for carcinogenesis, but also for the design of precision anti-cancer medicines and the optimisation of CRISPR/Cas9-based gene editing. In addition to providing molecular insights into NHEJ, this work uncovers a conserved SUMO-binding module and provides a rich resource on direct SUMO binders exploitable towards uncovering SUMOylation pathways in a wide array of cellular processes.


Assuntos
Reparo do DNA por Junção de Extremidades , Reparo do DNA , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA/metabolismo , Humanos , Análise em Microsséries , Ligação Proteica , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina , Sumoilação
3.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163037

RESUMO

Despite notable advances in utilising PARP inhibitor monotherapy, many cancers are not PARP inhibitor-sensitive or develop treatment resistance. In this work, we show that the two structurally-related sesquiterpene lactones, a 2-bromobenzyloxy derivative of dehydrosantonin (BdS) and alantolactone (ATL) sensitise p53 wildtype, homologous recombination-proficient cancer cells to low-dose treatment with the PARP inhibitor, olaparib. Exposure to combination treatments of olaparib with BdS or ATL induces cell-cycle changes, chromosomal instability, as well as considerable increases in nuclear area. Mechanistically, we uncover that mitotic errors likely depend on oxidative stress elicited by the electrophilic lactone warheads and olaparib-mediated PARP-trapping, culminating in replication stress. Combination treatments exhibit moderately synergistic effects on cell survival, probably attenuated by a p53-mediated, protective cell-cycle arrest in the G2 cell-cycle phase. Indeed, using a WEE1 inhibitor, AZD1775, to inhibit the G2/M cell-cycle checkpoint further decreased cell survival. Around half of all cancers diagnosed retain p53 functionality, and this proportion could be expected to increase with improved diagnostic approaches in the clinic. Utilising sublethal oxidative stress to sensitise p53 wildtype, homologous recombination-proficient cancer cells to low-dose PARP-trapping could therefore serve as the basis for future research into the treatment of cancers currently refractory to PARP inhibition.


Assuntos
Lactonas/farmacologia , Neoplasias/genética , Ftalazinas/farmacologia , Piperazinas/farmacologia , Sesquiterpenos/farmacologia , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Instabilidade Cromossômica , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Neoplasias/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinonas/farmacologia , Sesquiterpenos de Eudesmano/farmacologia
4.
Mutagenesis ; 37(1): 3-12, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35137176

RESUMO

Micronucleus (MN) formation is routinely used as a biodosimeter for radiation exposures and has historically been used as a measure of DNA damage in cells. Strongly correlating with dose, MN are also suggested to indicate radiation quality, differentiating between particle and photon irradiation. The "gold standard" for measuring MN formation is Fenech's cytokinesis-block micronucleus (CBMN) cytome assay, which uses the cytokinesis blocking agent cytochalasin-B. Here, we present a comprehensive analysis of the literature investigating MN induction trends in vitro, collating 193 publications, with 2476 data points. Data were collected from original studies that used the CBMN assay to quantify MN in response to ionizing radiation in vitro. Overall, the meta-analysis showed that individual studies mostly have a linear increase of MN with dose [85% of MN per cell (MNPC) datasets and 89% of percentage containing MN (PCMN) datasets had an R2 greater than 0.90]. However, there is high variation between studies, resulting in a low R2 when data are combined (0.47 for MNPC datasets and 0.60 for PCMN datasets). Particle type, species, cell type, and cytochalasin-B concentration were suggested to influence MN frequency. However, variation in the data meant that the effects could not be strongly correlated with the experimental parameters investigated. There is less variation between studies when comparing the PCMN rather than the number of MNPC. Deviation from CBMN protocol specified timings did not have a large effect on MN induction. However, further analysis showed less variation between studies following Fenech's protocol closely, which provided more reliable results. By limiting the cell type and species as well as only selecting studies following the Fenech protocol, R2 was increased to 0.64 for both measures. We therefore determine that due to variation between studies, MN are currently a poor predictor of radiation-induced DNA damage and make recommendations for futures studies assessing MN to improve consistency between datasets.


Assuntos
Citocinese , Linfócitos , Dano ao DNA , Testes para Micronúcleos/métodos , Radiação Ionizante
5.
Biomol NMR Assign ; 15(2): 389-395, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34173222

RESUMO

DNA double-strand breaks (DSBs) represent the most cytotoxic DNA lesions, as-if mis- or unrepaired-they can cause cell death or lead to genome instability, which in turn can cause cancer. DSBs are repaired by two major pathways termed homologous recombination and non-homologous end-joining (NHEJ). NHEJ is responsible for repairing the vast majority of DSBs arising in human cells. Defects in NHEJ factors are also associated with microcephaly, primordial dwarfism and immune deficiencies. One of the key proteins important for mediating NHEJ is XRCC4. XRCC4 is a dimer, with the dimer interface mediated by an extended coiled-coil. The N-terminal head domain forms a mixed alpha-beta globular structure. Numerous factors interact with the C-terminus of the coiled-coil domain, which is also associated with significant self-association between XRCC4 dimers. A range of construct lengths of human XRCC4 were expressed and purified, and the 1-164 variant had the best NMR properties, as judged by consistent linewidths, and chemical shift dispersion. In this work we report the 1H, 15 N and 13C backbone resonance assignments of human XRCC4 in the solution form of the 1-164 construct. Assignments were obtained by heteronuclear multidimensional NMR spectroscopy. In total, 156 of 161 assignable residues of XRCC4 were assigned to resonances in the TROSY spectrum, with an additional 11 resonances assigned to His-Tag residues. Prediction of solution secondary structure from a chemical shift analysis using the TALOS + webserver is in good agreement with the published X-ray crystal structures of this protein.


Assuntos
Reparo do DNA por Junção de Extremidades
6.
Trends Cell Biol ; 31(8): 628-643, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33685796

RESUMO

Ubiquitin and ubiquitin-like proteins (UBLs) function as critical post-translational modifiers in the maintenance of genome stability. Ubiquitin/UBL-conjugating enzymes (E2s) are responsible, as part of a wider enzymatic cascade, for transferring single moieties or polychains of ubiquitin/UBLs to one or multiple residues on substrate proteins. Recent advances in structural and mechanistic understanding of how ubiquitin/UBL substrate attachment is orchestrated indicate that E2s can exert control over chain topology, substrate-site specificity, and downstream physiological effects to help maintain genome stability. Drug discovery efforts have typically focussed on modulating other members of the ubiquitin/UBL cascades or the ubiquitin-proteasome system. Here, we review the current standing of E2s in genome stability and revisit their potential as pharmacological targets for developing novel anti-cancer therapies.


Assuntos
Enzimas de Conjugação de Ubiquitina , Ubiquitina , Instabilidade Genômica , Humanos , Processamento de Proteína Pós-Traducional , Ubiquitina/genética , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinas/metabolismo
7.
Biomolecules ; 10(11)2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33203188

RESUMO

Maintenance of genome stability is a crucial priority for any organism. To meet this priority, robust signalling networks exist to facilitate error-free DNA replication and repair. These signalling cascades are subject to various regulatory post-translational modifications that range from simple additions of chemical moieties to the conjugation of ubiquitin-like proteins (UBLs). Interferon Stimulated Gene 15 (ISG15) is one such UBL. While classically thought of as a component of antiviral immunity, ISG15 has recently emerged as a regulator of genome stability, with key roles in the DNA damage response (DDR) to modulate p53 signalling and error-free DNA replication. Additional proteomic analyses and cancer-focused studies hint at wider-reaching, uncharacterised functions for ISG15 in genome stability. We review these recent discoveries and highlight future perspectives to increase our understanding of this multifaceted UBL in health and disease.


Assuntos
Citocinas/genética , Citocinas/metabolismo , Dano ao DNA/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Ubiquitinas/genética , Ubiquitinas/metabolismo , Sequência de Aminoácidos , Animais , Citocinas/química , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ubiquitinas/química
8.
Nat Commun ; 11(1): 5618, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154372

RESUMO

Systemic chemotherapy remains the backbone of many cancer treatments. Due to its untargeted nature and the severe side effects it can cause, numerous nanomedicine approaches have been developed to overcome these issues. However, targeted delivery of therapeutics remains challenging. Engineering microrobots is increasingly receiving attention in this regard. Their functionalities, particularly their motility, allow microrobots to penetrate tissues and reach cancers more efficiently. Here, we highlight how different microrobots, ranging from tailor-made motile bacteria and tiny bubble-propelled microengines to hybrid spermbots, can be engineered to integrate sophisticated features optimised for precision-targeting of a wide range of cancers. Towards this, we highlight the importance of integrating clinicians, the public and cancer patients early on in the development of these novel technologies.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Robótica , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Humanos , Comunicação Interdisciplinar , Nanomedicina , Robótica/classificação
9.
Nanoscale ; 12(39): 20467-20481, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33026016

RESUMO

Cellular micromotors are attractive for locally delivering high concentrations of drug, and targeting hard-to-reach disease sites such as cervical cancer and early ovarian cancer lesions by non-invasive means. Spermatozoa are highly efficient micromotors perfectly adapted to traveling up the female reproductive system. Indeed, bovine sperm-based micromotors have shown potential to carry drugs toward gynecological cancers. However, due to major differences in the molecular make-up of bovine and human sperm, a key translational bottleneck for bringing this technology closer to the clinic is to transfer this concept to human material. Here, we successfully load human sperm with Doxorubicin (DOX) and perform treatment of 3D cervical cancer and patient-representative ovarian cancer cell cultures, resulting in strong anticancer cell effects. Additionally, we define the subcellular localization of the chemotherapeutic drug within human sperm, using high-resolution optical microscopy. We also assess drug effects on sperm motility and viability over time, employing sperm samples from healthy donors as well as assisted reproduction patients. Finally, we demonstrate guidance and release of human drug-loaded sperm onto cancer tissues using magnetic microcaps, and show the sperm microcap loaded with a second anticancer drug, camptothecin (CPT), which unlike DOX is not suitable for directly loading into sperm due to its hydrophobic nature. This co-drug delivery approach opens up novel targeted combinatorial drug therapies for future applications.


Assuntos
Neoplasias Ovarianas , Motilidade dos Espermatozoides , Animais , Camptotecina , Bovinos , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Masculino , Neoplasias Ovarianas/tratamento farmacológico
11.
Essays Biochem ; 64(5): 737-752, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32451552

RESUMO

DNA suffers constant insult from a variety of endogenous and exogenous sources. To deal with the arising lesions, cells have evolved complex and coordinated pathways, collectively termed the DNA damage response (DDR). Importantly, an improper DDR can lead to genome instability, premature ageing and human diseases, including cancer as well as neurodegenerative disorders. As a crucial process for cell survival, regulation of the DDR is multi-layered and includes several post-translational modifications. Since the discovery of ubiquitin in 1975 and the ubiquitylation cascade in the early 1980s, a number of ubiquitin-like proteins (UBLs) have been identified as post-translational modifiers. However, while the importance of ubiquitin and the UBLs SUMO and NEDD8 in DNA damage repair and signalling is well established, the roles of the remaining UBLs in the DDR are only starting to be uncovered. Herein, we revise the current status of the UBLs ISG15, UBL5, FAT10 and UFM1 as emerging co-regulators of DDR processes. In fact, it is becoming clear that these post-translational modifiers play important pleiotropic roles in DNA damage and/or associated stress-related cellular responses. Expanding our understanding of the molecular mechanisms underlying these emerging UBL functions will be fundamental for enhancing our knowledge of the DDR and potentially provide new therapeutic strategies for various human diseases including cancer.


Assuntos
Dano ao DNA , Ubiquitinas/metabolismo , Reparo do DNA , Humanos , Processamento de Proteína Pós-Traducional , Ubiquitinação
12.
Cancers (Basel) ; 11(1)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650591

RESUMO

The DNA damage response (DDR) is a designation for a number of pathways that protects our DNA from various damaging agents. In normal cells, the DDR is extremely important for maintaining genome integrity, but in cancer cells these mechanisms counteract therapy-induced DNA damage. Inhibition of the DDR could therefore be used to increase the efficacy of anti-cancer treatments. Hyperthermia is an example of such a treatment-it inhibits a sub-pathway of the DDR, called homologous recombination (HR). It does so by inducing proteasomal degradation of BRCA2 -one of the key HR factors. Understanding the precise mechanism that mediates this degradation is important for our understanding of how hyperthermia affects therapy and how homologous recombination and BRCA2 itself function. In addition, mechanistic insight into the process of hyperthermia-induced BRCA2 degradation can yield new therapeutic strategies to enhance the effects of local hyperthermia or to inhibit HR. Here, we investigate the mechanisms driving hyperthermia-induced BRCA2 degradation. We find that BRCA2 degradation is evolutionarily conserved, that BRCA2 stability is dependent on HSP90, that ubiquitin might not be involved in directly targeting BRCA2 for protein degradation via the proteasome, and that BRCA2 degradation might be modulated by oxidative stress and radical scavengers.

13.
ACS Nano ; 10(6): 5835-46, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27267364

RESUMO

In vivo, mammalian cells proliferate within 3D environments consisting of numerous microcavities and channels, which contain a variety of chemical and physical cues. External environments often differ between normal and pathological states, such as the unique spatial constraints that metastasizing cancer cells experience as they circulate the vasculature through arterioles and narrow capillaries, where they can divide and acquire elongated cylindrical shapes. While metastatic tumors cause most cancer deaths, factors impacting early cancer cell proliferation inside the vasculature and those that can promote the formation of secondary tumors remain largely unknown. Prior studies investigating confined mitosis have mainly used 2D cell culture systems. Here, we mimic aspects of metastasizing tumor cells dividing inside blood capillaries by investigating single-cell divisions of living human cancer cells, trapped inside 3D rolled-up, transparent nanomembranes. We assess the molecular effects of tubular confinement on key mitotic features, using optical high- and super-resolution microscopy. Our experiments show that tubular confinement affects the morphology and dynamics of the mitotic spindle, chromosome arrangements, and the organization of the cell cortex. Moreover, we reveal that membrane blebbing and/or associated processes act as a potential genome-safety mechanism, limiting the extent of genomic instability caused by mitosis in confined circumstances, especially in tubular 3D microenvironments. Collectively, our study demonstrates the potential of rolled-up nanomembranes for gaining molecular insights into key cellular events occurring in tubular 3D microenvironments in vivo.


Assuntos
Proliferação de Células , Mitose , Nanotubos , Neoplasias , Animais , Humanos , Microscopia , Nanoestruturas
14.
Nat Cell Biol ; 17(11): 1458-1470, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26502057

RESUMO

Ubiquitylation is crucial for proper cellular responses to DNA double-strand breaks (DSBs). If unrepaired, these highly cytotoxic lesions cause genome instability, tumorigenesis, neurodegeneration or premature ageing. Here, we conduct a comprehensive, multilayered screen to systematically profile all human ubiquitin E2 enzymes for impacts on cellular DSB responses. With a widely applicable approach, we use an exemplary E2 family, UBE2Ds, to identify ubiquitylation-cascade components downstream of E2s. Thus, we uncover the nuclear E3 ligase RNF138 as a key homologous recombination (HR)-promoting factor that functions with UBE2Ds in cells. Mechanistically, UBE2Ds and RNF138 accumulate at DNA-damage sites and act at early resection stages by promoting CtIP ubiquitylation and accrual. This work supplies insights into regulation of DSB repair by HR. Moreover, it provides a rich information resource on E2s that can be exploited by follow-on studies.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Nucleares/metabolismo , Reparo de DNA por Recombinação , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Endodesoxirribonucleases , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Immunoblotting , Microscopia Confocal , Proteínas Nucleares/genética , Interferência de RNA , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
16.
Mol Cell Biol ; 34(11): 2062-74, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24687851

RESUMO

The DNA damage response (DDR) is critical for genome stability and the suppression of a wide variety of human malignancies, including neurodevelopmental disorders, immunodeficiency, and cancer. In addition, the efficacy of many chemotherapeutic strategies is dictated by the status of the DDR. Ubiquitin-specific protease 28 (USP28) was reported to govern the stability of multiple factors that are critical for diverse aspects of the DDR. Here, we examined the effects of USP28 depletion on the DDR in cells and in vivo. We found that USP28 is recruited to double-strand breaks in a manner that requires the tandem BRCT domains of the DDR protein 53BP1. However, we observed only minor DDR defects in USP28-depleted cells, and mice lacking USP28 showed normal longevity, immunological development, and radiation responses. Our results thus indicate that USP28 is not a critical factor in double-strand break metabolism and is unlikely to be an attractive target for therapeutic intervention aimed at chemotherapy sensitization.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ubiquitina Tiolesterase/metabolismo , Animais , Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linfócitos B/citologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Quinase do Ponto de Checagem 2/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA , Instabilidade Genômica , Células HEK293 , Humanos , Switching de Imunoglobulina/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/genética , Proteínas Nucleares/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Pontos de Checagem da Fase S do Ciclo Celular/genética , Transdução de Sinais/genética , Timócitos/imunologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina Tiolesterase/genética
17.
Nat Struct Mol Biol ; 21(4): 366-74, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24658350

RESUMO

Although both homologous recombination (HR) and nonhomologous end joining can repair DNA double-strand breaks (DSBs), the mechanisms by which one of these pathways is chosen over the other remain unclear. Here we show that transcriptionally active chromatin is preferentially repaired by HR. Using chromatin immunoprecipitation-sequencing (ChIP-seq) to analyze repair of multiple DSBs induced throughout the human genome, we identify an HR-prone subset of DSBs that recruit the HR protein RAD51, undergo resection and rely on RAD51 for efficient repair. These DSBs are located in actively transcribed genes and are targeted to HR repair via the transcription elongation-associated mark trimethylated histone H3 K36. Concordantly, depletion of SETD2, the main H3 K36 trimethyltransferase, severely impedes HR at such DSBs. Our study thereby demonstrates a primary role in DSB repair of the chromatin context in which a break occurs.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Recombinação Homóloga , Linhagem Celular , Cromatina/metabolismo , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Rad51 Recombinase/metabolismo , Transcrição Gênica
18.
Nano Lett ; 14(8): 4197-204, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-24598026

RESUMO

We use micropatterning and strain engineering to encapsulate single living mammalian cells into transparent tubular architectures consisting of three-dimensional (3D) rolled-up nanomembranes. By using optical microscopy, we demonstrate that these structures are suitable for the scrutiny of cellular dynamics within confined 3D-microenvironments. We show that spatial confinement of mitotic mammalian cells inside tubular architectures can perturb metaphase plate formation, delay mitotic progression, and cause chromosomal instability in both a transformed and nontransformed human cell line. These findings could provide important clues into how spatial constraints dictate cellular behavior and function.


Assuntos
Membranas Artificiais , Metáfase , Nanoestruturas/química , Células HeLa , Humanos
19.
Science ; 341(6146): 660-4, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23929981

RESUMO

Chromosome translocations are a hallmark of cancer cells. We have developed an experimental system to visualize the formation of translocations in living cells and apply it to characterize the spatial and dynamic properties of translocation formation. We demonstrate that translocations form within hours of the occurrence of double-strand breaks (DSBs) and that their formation is cell cycle-independent. Translocations form preferentially between prepositioned genome elements, and perturbation of key factors of the DNA repair machinery uncouples DSB pairing from translocation formation. These observations generate a spatiotemporal framework for the formation of translocations in living cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Imagem com Lapso de Tempo , Translocação Genética , Animais , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Ciclo Celular , Reparo do DNA , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Fluorescência Verde/genética , Ensaios de Triagem em Larga Escala , Óperon Lac , Repressores Lac/genética , Camundongos , Microscopia/métodos , Células NIH 3T3 , Neoplasias/genética , Proteínas Nucleares/antagonistas & inibidores
20.
Cell ; 153(3): 513-5, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23622237

RESUMO

Trimethylation of histone H3 on Lys36 (H3K36me3) by SETD2 is linked to actively transcribed regions. Li et al. identify a novel role for H3K36me3 that facilitates DNA mismatch repair (MMR) in cells by targeting the MMR machinery to chromatin during the cell cycle, thereby explaining certain cases of MMR-defective cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...