Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 11(4): 231280, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601028

RESUMO

Climate change is predicted to negatively impact calcification and change the structural integrity of biogenic carbonates, influencing their protective function. We assess the impacts of warming on the morphology and crystallography of Amphistegina lobifera, an abundant benthic foraminifera species in shallow environments. Specimens from a thermally disturbed field area, mimicking future warming, are about 50% smaller compared with a control location. Differences in the position of the ν1 Raman mode of shells between the sites, which serves as a proxy for Mg content and calcification temperature, indicate that calcification is negatively impacted when temperatures are below the thermal range facilitating calcification. To test the impact of thermal stress on the Young's modulus of calcite which contributes to structural integrity, we quantify elasticity changes in large benthic foraminifera by applying atomic force microscopy to a different genus, Operculina ammonoides, cultured under optimal and high temperatures. Building on these observations of size and the sensitivity analysis for temperature-induced change in elasticity, we used finite element analysis to show that structural integrity is increased with reduced size and is largely insensitive to calcite elasticity. Our results indicate that warming-induced dwarfism creates shells that are more resistant to fracture because they are smaller.

2.
Sci Rep ; 13(1): 13473, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596363

RESUMO

Coralline algae form complex habitats which are biodiversity hotspots. Experimental studies suggest that climate change will decrease coralline algal structural integrity. These experiments, however, lack information on local morphological variability and how much structural change would be needed to threaten habitat formation. Here, using finite element modelling, we assess variability in cellular structure and chemical composition of the carbonate skeleton of four coralline algal species from Britain in contemporary and historical specimens collected over the last 130 years. Cellular and mineral properties are highly variable within species, between sites and through time, with structurally weaker cells in the southern species and contemporary material compared to northern taxa and historical material. Yet, temporal differences in strength were smaller than spatial differences. Our work supports long term experiments which show the adaptation potential of this group. Our results suggest that future anthropogenic climate change may lead to loss of habitat complexity in the south and expansion of structurally weaker southern species into northern sites.


Assuntos
Aclimatação , Biodiversidade , Mudança Climática , Compostos Radiofarmacêuticos , Esqueleto
3.
Curr Biol ; 33(1): 109-121.e3, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36549298

RESUMO

Past responses to environmental change provide vital baseline data for estimating the potential resilience of extant taxa to future change. Here, we investigate the latitudinal range contraction that terrestrial and freshwater turtles (Testudinata) experienced from the Late Cretaceous to the Paleogene (100.5-23.03 mya) in response to major climatic changes. We apply ecological niche modeling (ENM) to reconstruct turtle niches, using ancient and modern distribution data, paleogeographic reconstructions, and the HadCM3L climate model to quantify their range shifts in the Cretaceous and late Eocene. We then use the insights provided by these models to infer their probable ecological responses to future climate scenarios at different representative concentration pathways (RCPs 4.5 and 8.5 for 2100), which project globally increased temperatures and spreading arid biomes at lower to mid-latitudes. We show that turtle ranges are predicted to expand poleward in the Northern Hemisphere, with decreased habitat suitability at lower latitudes, inverting a trend of latitudinal range contraction that has been prevalent since the Eocene. Trionychids and freshwater turtles can more easily track their niches than Testudinidae and other terrestrial groups. However, habitat destruction and fragmentation at higher latitudes will probably reduce the capability of turtles and tortoises to cope with future climate changes.


Assuntos
Tartarugas , Animais , Tartarugas/fisiologia , Mudança Climática , Ecossistema , Água Doce , Probabilidade
5.
Philos Trans R Soc Lond B Biol Sci ; 377(1854): 20210131, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35574854

RESUMO

Climate and ecological emergencies play out acutely in coastal systems with devastating impacts on biodiversity, and the livelihoods of communities and their cultural values. Marine Protected Areas (MPAs) are one of the key management and regulatory tools against biodiversity loss, playing a role in strengthening bio-cultural diversity and sustainability of coastal social-ecological systems. What is unclear though is the effectiveness of static protections under climate change as species move. Next to ecological uncertainty, regulatory uncertainty may play a role in weakening marine conservation. We asked whether MPAs are ecologically effective now and can sustain or improve to be so in the future while facing key climate and regulatory uncertainties. MPAs can support the protection of cultural values and have an impact on activities of sea-users and the sustainability of social-ecological systems. As such, questions surrounding their legitimacy under a changing climate and increased uncertainty are pertinent. We argue that MPA governance must be cognisant of the interdependency between natural and human systems and their joint reaction to climate change impacts based on an integrated, co-developed, and interdisciplinary approach. Focusing on the UK as a case study, we highlight some of the challenges to achieve effective, adaptive and legitimate governance of MPAs. This article is part of the theme issue 'Nurturing resilient marine ecosystems'.


Assuntos
Mudança Climática , Ecossistema , Biodiversidade , Conservação dos Recursos Naturais , Humanos , Incerteza
6.
Glob Chang Biol ; 28(3): 1063-1076, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34706138

RESUMO

Planktonic foraminifera are one of the primary calcifiers in the modern ocean, contributing 23%-56% of total global pelagic carbonate production. However, a mechanistic understanding of how physiology and environmental conditions control their abundance and distribution is lacking, hindering the projection of the impact of future climate change. This understanding is important, not only for ecosystem dynamics, but also for marine carbon cycling because of foraminifera's key role in carbonate production. Here we present and apply a global trait-based ecosystem model of non-spinose planktonic foraminifera ('ForamEcoGEnIE') to assess their ecology and global distribution under future climate change. ForamEcoGEnIE considers the traits of calcium carbonate production, shell size, and foraging. It captures the main characteristic of biogeographical patterns of non-spinose species - with maximum biomass concentrations found in mid- to high-latitude waters and upwelling areas. The model also reproduces the magnitude of global carbonate production relatively well, although the foraminifera standing stock is systematically overestimated. In response to future scenarios of rising atmospheric CO2 (RCP6 and RCP8.5), on a regional scale, the modelled foraminifera biomass and export flux increases in the subpolar regions of the North Atlantic and the Southern Ocean while it decreases everywhere else. In the absence of adaptation, the biomass decline in the low-latitude South Pacific suggests extirpation. The model projects a global average loss in non-spinose foraminifera biomass between 8% (RCP6) and 11% (RCP8.5) by 2050 and between 14% and 18% by 2100 as a response to ocean warming and associated changes in primary production and ecological dynamics. Global calcium carbonate flux associated with non-spinose foraminifera declines by 13%-18% by 2100. That decline can slow down the ocean carbonate pump and create short-term positive feedback on rising atmospheric pCO2 .


Assuntos
Foraminíferos , Ciclo do Carbono , Mudança Climática , Ecossistema , Foraminíferos/fisiologia , Oceanos e Mares , Plâncton/fisiologia
7.
Sci Adv ; 7(42): eabh4224, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34652934

RESUMO

The Paleocene-Eocene Thermal Maximum (PETM; ~55.9 Ma) was a geologically rapid warming period associated with carbon release, which caused a marked increase in the hydrological cycle. Here, we use lithium (Li) isotopes to assess the global change in weathering regime, a critical carbon drawdown mechanism, across the PETM. We find a negative Li isotope excursion of ~3‰ in both global seawater (marine carbonates) and in local weathering inputs (detrital shales). This is consistent with a very large delivery of clays to the oceans or a shift in the weathering regime toward higher physical erosion rates and sediment fluxes. Our seawater records are best explained by increases in global erosion rates of ~2× to 3× over 100 ka, combined with model-derived weathering increases of 50 to 60% compared to prewarming values. Such increases in weathering and erosion would have supported enhanced carbon burial, as both carbonate and organic carbon, thereby stabilizing climate.

8.
Proc Biol Sci ; 288(1953): 20210863, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34157875

RESUMO

The ocean biological pump is the mechanism by which carbon and nutrients are transported to depth. As such, the biological pump is critical in the partitioning of carbon dioxide between the ocean and atmosphere, and the rate at which that carbon can be sequestered through burial in marine sediments. How the structure and function of planktic ecosystems in the ocean govern the strength and efficiency of the biological pump and its resilience to disruption are poorly understood. The aftermath of the impact at the Cretaceous/Palaeogene (K/Pg) boundary provides an ideal opportunity to address these questions as both the biological pump and marine plankton size and diversity were fundamentally disrupted. The excellent fossil record of planktic foraminifera as indicators of pelagic-biotic recovery combined with carbon isotope records tracing biological pump behaviour, show that the recovery of ecological traits (diversity, size and photosymbiosis) occurred much later (approx. 4.3 Ma) than biological pump recovery (approx. 1.8 Ma). We interpret this decoupling of diversity and the biological pump as an indication that ecosystem function had sufficiently recovered to drive an effective biological pump, at least regionally in the South Atlantic.


Assuntos
Ecossistema , Foraminíferos , Isótopos de Carbono/análise , Extinção Biológica , Fósseis , Oceanos e Mares , Plâncton
9.
Proc Natl Acad Sci U S A ; 116(45): 22500-22504, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31636204

RESUMO

Mass extinction at the Cretaceous-Paleogene (K-Pg) boundary coincides with the Chicxulub bolide impact and also falls within the broader time frame of Deccan trap emplacement. Critically, though, empirical evidence as to how either of these factors could have driven observed extinction patterns and carbon cycle perturbations is still lacking. Here, using boron isotopes in foraminifera, we document a geologically rapid surface-ocean pH drop following the Chicxulub impact, supporting impact-induced ocean acidification as a mechanism for ecological collapse in the marine realm. Subsequently, surface water pH rebounded sharply with the extinction of marine calcifiers and the associated imbalance in the global carbon cycle. Our reconstructed water-column pH gradients, combined with Earth system modeling, indicate that a partial ∼50% reduction in global marine primary productivity is sufficient to explain observed marine carbon isotope patterns at the K-Pg, due to the underlying action of the solubility pump. While primary productivity recovered within a few tens of thousands of years, inefficiency in carbon export to the deep sea lasted much longer. This phased recovery scenario reconciles competing hypotheses previously put forward to explain the K-Pg carbon isotope records, and explains both spatially variable patterns of change in marine productivity across the event and a lack of extinction at the deep sea floor. In sum, we provide insights into the drivers of the last mass extinction, the recovery of marine carbon cycling in a postextinction world, and the way in which marine life imprints its isotopic signal onto the geological record.


Assuntos
Ciências da Terra/história , Água do Mar/química , Ácidos/análise , Animais , Ciclo do Carbono , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Planeta Terra , Foraminíferos/química , Foraminíferos/metabolismo , Fósseis/história , História Antiga , Concentração de Íons de Hidrogênio , Oceanos e Mares
10.
Philos Trans A Math Phys Eng Sci ; 376(2130)2018 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30177568

RESUMO

Climate change is predicted to alter temperature, carbonate chemistry and oxygen availability in the oceans, which will affect individuals, populations and ecosystems. We use the fossil record of benthic foraminifers to assess developmental impacts in response to environmental changes during the Palaeocene-Eocene Thermal Maximum (PETM). Using an unprecedented number of µ-computed tomography scans, we determine the size of the proloculus (first chamber), the number of chambers and the final size of two benthic foraminiferal species which survived the extinction at sites 690 (Atlantic sector, Southern Ocean, palaeodepth 1900 m), 1210 (central equatorial Pacific, palaeodepth 2100 m) and 1135 (Indian Ocean sector, Southern Ocean, palaeodepth 600-1000 m). The population at the shallowest site, 1135, does not show a clear response to the PETM, whereas those at the other sites record reductions in diameter or proloculus size. Temperature was similar at all sites, thus it is not likely to be the reason for differences between sites. At site 1210, small size coincided with higher chamber numbers during the peak event, and may have been caused by a combination of low carbonate ion concentrations and low food supply. Dwarfing at site 690 occurred at lower chamber numbers, and may have been caused by decreasing carbonate saturation at sufficient food levels to reproduce. Proloculus size varied strongly between sites and through time, suggesting a large influence of environment on both microspheric and megalospheric forms without clear bimodality. The effect of the environmental changes during the PETM was more pronounced at deeper sites, possibly implicating carbonate saturation.This article is part of a discussion meeting issue 'Hyperthermals: rapid and extreme global warming in our geological past'.


Assuntos
Ecossistema , Foraminíferos , Fenômenos Geológicos , Temperatura , Mudança Climática , Extinção Biológica , Imageamento Tridimensional , Densidade Demográfica , Fatores de Tempo , Microtomografia por Raio-X
11.
Evol Dev ; 19(3): 157-168, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28463472

RESUMO

Developmental processes represent one of the main constraints on the generation of adult form. Determining how constructional and energetic demands operate throughout growth is es-sential to understanding fundamental growth rules and trade-offs that define the framework within which new species originate. In organisms producing spiral shells, coiling patterns can inform on the constructional constraints acting throughout development that dictated the diversification of forms within a group. Here, we use Synchrotron radiation X-Ray tomographic microscopy (SRXTM) reconstructions of eight planktic foraminifera repre-sentative of the major morphotypic groups to determine disparity of coiling patterns by measuring Raupian parameters. The results show that foraminifera are a morphologically highly conservative group, exploiting a limited range of poten-tial coiling patterns. Very similar coiling patterns during early ontogeny, regardless of species, point toward strong constraints in early ontogeny and to common develop-mental processes acting across all morphogroups. Dispersion and lateral displacement of taxa in morphospace are limited to the adult stage. Accretion with low translation down the coiling axis in juveniles may maximize lateral growth and metabolic efficiency in light of costly calcification. Increased translation in the adult stages allows growth to accommo-date new chamber shapes, mediated by changes in aperture location and the site of accretion over ontogeny. These constructional constraints, and the accretion of a small number of discrete chambers, limit the potential for novel forms within the foraminifera compared to other groups of coiling organisms and may explain the repeated evolution of similar morphotypes throughout the evolutionary history of the group.


Assuntos
Evolução Biológica , Foraminíferos/citologia , Foraminíferos/genética , Biometria , Foraminíferos/classificação , Microscopia/métodos , Filogenia
12.
Proc Biol Sci ; 283(1839)2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27655766

RESUMO

Ectotherms have close physiological ties with the thermal environment; consequently, the impact of future climate change on their biogeographic distributions is of major interest. Here, we use the modern and deep-time fossil record of testudines (turtles, tortoises, and terrapins) to provide the first test of climate on the niche limits of both extant and extinct (Late Cretaceous, Maastrichtian) taxa. Ecological niche models are used to assess niche overlap in model projections for key testudine ecotypes and families. An ordination framework is applied to quantify metrics of niche change (stability, expansion, and unfilling) between the Maastrichtian and present day. Results indicate that niche stability over evolutionary timescales varies between testudine clades. Groups that originated in the Early Cretaceous show climatic niche stability, whereas those diversifying towards the end of the Cretaceous display larger niche expansion towards the modern. Temperature is the dominant driver of modern and past distributions, whereas precipitation is important for freshwater turtle ranges. Our findings demonstrate that testudines were able to occupy warmer climates than present day in the geological record. However, the projected rate and magnitude of future environmental change, in concert with other conservation threats, presents challenges for acclimation or adaptation.


Assuntos
Evolução Biológica , Mudança Climática , Ecossistema , Tartarugas , Animais , Fósseis
13.
Artigo em Inglês | MEDLINE | ID: mdl-27114586

RESUMO

Pelagic ecosystem function is integral to global biogeochemical cycling, and plays a major role in modulating atmospheric CO2 concentrations (pCO2). Uncertainty as to the effects of human activities on marine ecosystem function hinders projection of future atmospheric pCO2 To this end, events in the geological past can provide informative case studies in the response of ecosystem function to environmental and ecological changes. Around the Cretaceous-Palaeogene (K-Pg) boundary, two such events occurred: Deccan large igneous province (LIP) eruptions and massive bolide impact at the Yucatan Peninsula. Both perturbed the environment, but only the impact coincided with marine mass extinction. As such, we use these events to directly contrast the response of marine biogeochemical cycling to environmental perturbation with and without changes in global species richness. We measure this biogeochemical response using records of deep-sea carbonate preservation. We find that Late Cretaceous Deccan volcanism prompted transient deep-sea carbonate dissolution of a larger magnitude and timescale than predicted by geochemical models. Even so, the effect of volcanism on carbonate preservation was slight compared with bolide impact. Empirical records and geochemical models support a pronounced increase in carbonate saturation state for more than 500 000 years following the mass extinction of pelagic carbonate producers at the K-Pg boundary. These examples highlight the importance of pelagic ecosystems in moderating climate and ocean chemistry.


Assuntos
Ciclo do Carbono , Ecossistema , Extinção Biológica , Oceanos e Mares , Água do Mar/química , Carbonatos/análise
14.
Ecol Evol ; 4(13): 2787-98, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25077027

RESUMO

Seaweed and seagrass communities in the northeast Atlantic have been profoundly impacted by humans, and the rate of change is accelerating rapidly due to runaway CO2 emissions and mounting pressures on coastlines associated with human population growth and increased consumption of finite resources. Here, we predict how rapid warming and acidification are likely to affect benthic flora and coastal ecosystems of the northeast Atlantic in this century, based on global evidence from the literature as interpreted by the collective knowledge of the authorship. We predict that warming will kill off kelp forests in the south and that ocean acidification will remove maerl habitat in the north. Seagrasses will proliferate, and associated epiphytes switch from calcified algae to diatoms and filamentous species. Invasive species will thrive in niches liberated by loss of native species and spread via exponential development of artificial marine structures. Combined impacts of seawater warming, ocean acidification, and increased storminess may replace structurally diverse seaweed canopies, with associated calcified and noncalcified flora, with simple habitats dominated by noncalcified, turf-forming seaweeds.

15.
Philos Trans A Math Phys Eng Sci ; 371(2001): 20130094, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24043868

RESUMO

Temperature reconstructions indicate that the Pliocene was approximately 3(°)C warmer globally than today, and several recent reconstructions of Pliocene atmospheric CO2 indicate that it was above pre-industrial levels and similar to those likely to be seen this century. However, many of these reconstructions have been of relatively low temporal resolution, meaning that these records may have failed to capture variations associated with the 41 kyr glacial-interglacial cycles thought to have operated in the Pliocene. Here we present a new, high temporal resolution alkenone carbon isotope-based record of pCO2 spanning 3.3-2.8 Ma from Ocean Drilling Program Site 999. Our record is of high enough resolution (approx. 19 kyr) to resolve glacial-interglacial changes beyond the intrinsic uncertainty of the proxy method. The record suggests that Pliocene CO2 levels were relatively stable, exhibiting variation less than 55 ppm. We perform sensitivity studies to investigate the possible effect of changing sea surface temperature (SST), which highlights the importance of accurate and precise SST reconstructions for alkenone palaeobarometry, but demonstrate that these uncertainties do not affect our conclusions of relatively stable pCO2 levels during this interval.

16.
Proc Natl Acad Sci U S A ; 110(23): 9273-6, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23690593

RESUMO

Predicting the impact of ongoing anthropogenic CO2 emissions on calcifying marine organisms is complex, owing to the synergy between direct changes (acidification) and indirect changes through climate change (e.g., warming, changes in ocean circulation, and deoxygenation). Laboratory experiments, particularly on longer-lived organisms, tend to be too short to reveal the potential of organisms to acclimatize, adapt, or evolve and usually do not incorporate multiple stressors. We studied two examples of rapid carbon release in the geological record, Eocene Thermal Maximum 2 (∼53.2 Ma) and the Paleocene Eocene Thermal Maximum (PETM, ∼55.5 Ma), the best analogs over the last 65 Ma for future ocean acidification related to high atmospheric CO2 levels. We use benthic foraminifers, which suffered severe extinction during the PETM, as a model group. Using synchrotron radiation X-ray tomographic microscopy, we reconstruct the calcification response of survivor species and find, contrary to expectations, that calcification significantly increased during the PETM. In contrast, there was no significant response to the smaller Eocene Thermal Maximum 2, which was associated with a minor change in diversity only. These observations suggest that there is a response threshold for extinction and calcification response, while highlighting the utility of the geological record in helping constrain the sensitivity of biotic response to environmental change.


Assuntos
Adaptação Biológica/fisiologia , Atmosfera/análise , Calcificação Fisiológica/fisiologia , Dióxido de Carbono/análise , Mudança Climática , Foraminíferos/química , Carbonato de Cálcio/análise , Foraminíferos/fisiologia , História Antiga , Oceanos e Mares , Síncrotrons , Tomografia por Raios X
17.
Science ; 335(6072): 1058-63, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22383840

RESUMO

Ocean acidification may have severe consequences for marine ecosystems; however, assessing its future impact is difficult because laboratory experiments and field observations are limited by their reduced ecologic complexity and sample period, respectively. In contrast, the geological record contains long-term evidence for a variety of global environmental perturbations, including ocean acidification plus their associated biotic responses. We review events exhibiting evidence for elevated atmospheric CO(2), global warming, and ocean acidification over the past ~300 million years of Earth's history, some with contemporaneous extinction or evolutionary turnover among marine calcifiers. Although similarities exist, no past event perfectly parallels future projections in terms of disrupting the balance of ocean carbonate chemistry-a consequence of the unprecedented rapidity of CO(2) release currently taking place.


Assuntos
Organismos Aquáticos , Ecossistema , Fenômenos Geológicos , Água do Mar/química , Adaptação Biológica , Animais , Atmosfera , Dióxido de Carbono , Carbonatos/análise , Extinção Biológica , Previsões , Fósseis , Concentração de Íons de Hidrogênio , Oceanos e Mares
18.
Proc Natl Acad Sci U S A ; 106(23): 9333-8, 2009 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-19458255

RESUMO

It has been hypothesized that increased water column stratification has been an abiotic "universal driver" affecting average cell size in Cenozoic marine plankton. Gradually decreasing Cenozoic radiolarian shell weight, by contrast, suggests that competition for dissolved silica, a shared nutrient, resulted in biologic coevolution between radiolaria and marine diatoms, which expanded dramatically in the Cenozoic. We present data on the 2 components of shell weight change--size and silicification--of Cenozoic radiolarians. In low latitudes, increasing Cenozoic export of silica to deep waters by diatoms and decreasing nutrient upwelling from increased water column stratification have created modern silica-poor surface waters. Here, radiolarian silicification decreases significantly (r = 0.91, P < 0.001), from approximately 0.18 (shell volume fraction) in the basal Cenozoic to modern values of approximately 0.06. A third of the total change occurred rapidly at 35 Ma, in correlation to major increases in water column stratification and abundance of diatoms. In high southern latitudes, Southern Ocean circulation, present since the late Eocene, maintains significant surface water silica availability. Here, radiolarian silicification decreased insignificantly (r = 0.58, P = 0.1), from approximately 0.13 at 35 Ma to 0.11 today. Trends in shell size in both time series are statistically insignificant and are not correlated with each other. We conclude that there is no universal driver changing cell size in Cenozoic marine plankton. Furthermore, biologic and physical factors have, in concert, by reducing silica availability in surface waters, forced macroevolutionary changes in Cenozoic low-latitude radiolarians.


Assuntos
Evolução Biológica , Plâncton/genética , Dióxido de Silício/metabolismo , Animais , Diatomáceas/classificação , Diatomáceas/genética , Diatomáceas/fisiologia , Ecossistema , Plâncton/classificação , Plâncton/fisiologia
19.
Proc Biol Sci ; 272(1563): 609-17, 2005 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-15817435

RESUMO

Among rodents, the lineage from Progonomys hispanicus to Stephanomys documents a case of increasing size and dental specialization during an approximately 9 Myr time-interval. On the contrary, some contemporaneous generalist lineages like Apodemus show a limited morphological evolution. Dental shape can be related to diet and can be used to assess the ecological changes along the lineages. Consequently, size and shape of the first upper molar were measured in order to quantify the patterns of morphological evolution along both lineages and compare them to environmental trends. Climatic changes do not have a direct influence on evolution, but they open new ecological opportunities by changing vegetation and allow the evolution of a specialist like Stephanomys. On the other hand, environmental changes are not dramatic enough to destroy the habitat of a long-term generalist like Apodemus. Hence, our results exemplify a case of an influence of climate on the evolution of specialist species, although a generalist species may persist without change.


Assuntos
Evolução Biológica , Clima , Dieta , Meio Ambiente , Fósseis , Dente Molar/anatomia & histologia , Roedores/anatomia & histologia , Análise de Variância , Animais , França , Dente Molar/fisiologia , Odontometria , Espanha
20.
Science ; 303(5655): 207-10, 2004 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-14716007

RESUMO

We characterize the evolutionary radiation of planktic foraminifera by the test size distributions of entire assemblages in more than 500 Cenozoic marine sediment samples, including more than 1 million tests. Calibration of Holocene size patterns with environmental parameters and comparisons with Cenozoic paleoproxy data show a consistently positive correlation between test size and surface-water stratification intensity. We infer that the observed macroevolutionary increase in test size of planktic foraminifera through the Cenozoic was an adaptive response to intensifying surface-water stratification in low latitudes, which was driven by polar cooling.


Assuntos
Evolução Biológica , Plâncton , Animais , Clima , Ecossistema , Eucariotos/química , Eucariotos/citologia , Geografia , Isótopos de Oxigênio/análise , Plâncton/química , Plâncton/citologia , Água do Mar , Temperatura , Tempo , Zooplâncton/química , Zooplâncton/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...