Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38645099

RESUMO

Humans evolved an extraordinarily expanded and complex cerebral cortex, associated with developmental and gene regulatory modifications 1-3 . Human accelerated regions (HARs) are highly conserved genomic sequences with human-specific nucleotide substitutions. Although there are thousands of annotated HARs, their functional contribution to human-specific cortical development is largely unknown 4,5 . HARE5 is a HAR transcriptional enhancer of the WNT signaling receptor Frizzled8 (FZD8) active during brain development 6 . Here, using genome-edited mouse and primate models, we demonstrate that human (Hs) HARE5 fine-tunes cortical development and connectivity by controlling the proliferative and neurogenic capacity of neural progenitor cells (NPCs). Hs-HARE5 knock-in mice have significantly enlarged neocortices containing more neurons. By measuring neural dynamics in vivo we show these anatomical features correlate with increased functional independence between cortical regions. To understand the underlying developmental mechanisms, we assess progenitor fate using live imaging, lineage analysis, and single-cell RNA sequencing. This reveals Hs-HARE5 modifies radial glial progenitor behavior, with increased self-renewal at early developmental stages followed by expanded neurogenic potential. We use genome-edited human and chimpanzee (Pt) NPCs and cortical organoids to assess the relative enhancer activity and function of Hs-HARE5 and Pt-HARE5. Using these orthogonal strategies we show four human-specific variants in HARE5 drive increased enhancer activity which promotes progenitor proliferation. These findings illustrate how small changes in regulatory DNA can directly impact critical signaling pathways and brain development. Our study uncovers new functions for HARs as key regulatory elements crucial for the expansion and complexity of the human cerebral cortex.

3.
Nature ; 599(7886): 640-644, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34707291

RESUMO

The cognitive abilities that characterize humans are thought to emerge from unique features of the cortical circuit architecture of the human brain, which include increased cortico-cortical connectivity. However, the evolutionary origin of these changes in connectivity and how they affected cortical circuit function and behaviour are currently unknown. The human-specific gene duplication SRGAP2C emerged in the ancestral genome of the Homo lineage before the major phase of increase in brain size1,2. SRGAP2C expression in mice increases the density of excitatory and inhibitory synapses received by layer 2/3 pyramidal neurons (PNs)3-5. Here we show that the increased number of excitatory synapses received by layer 2/3 PNs induced by SRGAP2C expression originates from a specific increase in local and long-range cortico-cortical connections. Mice humanized for SRGAP2C expression in all cortical PNs displayed a shift in the fraction of layer 2/3 PNs activated by sensory stimulation and an enhanced ability to learn a cortex-dependent sensory-discrimination task. Computational modelling revealed that the increased layer 4 to layer 2/3 connectivity induced by SRGAP2C expression explains some of the key changes in sensory coding properties. These results suggest that the emergence of SRGAP2C at the birth of the Homo lineage contributed to the evolution of specific structural and functional features of cortical circuits in the human cortex.


Assuntos
Córtex Cerebral , Vias Neurais , Animais , Feminino , Humanos , Masculino , Camundongos , Sinalização do Cálcio , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Discriminação Psicológica , Camundongos Transgênicos , Vias Neurais/fisiologia , Tamanho do Órgão , Células Piramidais/fisiologia , Sinapses/metabolismo
4.
Front Neural Circuits ; 15: 787164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069126

RESUMO

One of the most salient features defining modern humans is our remarkable cognitive capacity, which is unrivaled by any other species. Although we still lack a complete understanding of how the human brain gives rise to these unique abilities, the past several decades have witnessed significant progress in uncovering some of the genetic, cellular, and molecular mechanisms shaping the development and function of the human brain. These features include an expansion of brain size and in particular cortical expansion, distinct physiological properties of human neurons, and modified synaptic development. Together they specify the human brain as a large primate brain with a unique underlying neuronal circuit architecture. Here, we review some of the known human-specific features of neuronal connectivity, and we outline how novel insights into the human genome led to the identification of human-specific genetic modifiers that played a role in the evolution of human brain development and function. Novel experimental paradigms are starting to provide a framework for understanding how the emergence of these human-specific genomic innovations shaped the structure and function of neuronal circuits in the human brain.


Assuntos
Neurônios , Primatas , Animais , Humanos , Sinapses
5.
Neuron ; 107(4): 684-702.e9, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32562661

RESUMO

The midbrain dopamine (mDA) system is composed of molecularly and functionally distinct neuron subtypes that mediate specific behaviors and show select disease vulnerability, including in Parkinson's disease. Despite progress in identifying mDA neuron subtypes, how these neuronal subsets develop and organize into functional brain structures remains poorly understood. Here we generate and use an intersectional genetic platform, Pitx3-ITC, to dissect the mechanisms of substantia nigra (SN) development and implicate the guidance molecule Netrin-1 in the migration and positioning of mDA neuron subtypes in the SN. Unexpectedly, we show that Netrin-1, produced in the forebrain and provided to the midbrain through axon projections, instructs the migration of GABAergic neurons into the ventral SN. This migration is required to confine mDA neurons to the dorsal SN. These data demonstrate that neuron migration can be controlled by remotely produced and axon-derived secreted guidance cues, a principle that is likely to apply more generally.


Assuntos
Movimento Celular/fisiologia , Neurônios Dopaminérgicos/metabolismo , Neurônios GABAérgicos/metabolismo , Netrina-1/metabolismo , Prosencéfalo/metabolismo , Substância Negra/metabolismo , Animais , Axônios/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios GABAérgicos/citologia , Camundongos , Camundongos Transgênicos , Substância Negra/citologia
6.
J Bone Miner Res ; 35(4): 789-800, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31880824

RESUMO

The Rac1-specific guanosine triphosphatase (GTPase)-activating protein Slit-Robo GAP2 (Srgap2) is dramatically upregulated during RANKL-induced osteoclastogenesis. Srgap2 interacts with the cell membrane to locally inhibit activity of Rac1. In this study, we determined the role of Srgap2 in the myeloid lineage on bone homeostasis and the osteoclastic response to TNFα treatment. The bone phenotype of mice specifically lacking Srgap2 in the myeloid lineage (Srgap2 f/f :LysM-Cre; Srgap2 conditional knockout [cKO]) was investigated using histomorphometric analysis, in vitro cultures and Western blot analysis. Similar methods were used to determine the impact of TNFα challenge on osteoclast formation in Srgap2 cKO mice. Bone parameters in male Srgap2 cKO mice were unaffected. However, female cKO mice displayed higher trabecular bone volume due to increased osteoblast surface and bone formation rate, whereas osteoclastic parameters were unaltered. In vitro, cells from Srgap2 cKO had strongly enhanced Rac1 activation, but RANKL-induced osteoclast formation was unaffected. In contrast, conditioned medium from Srgap2 cKO osteoclasts promoted osteoblast differentiation and had increased levels of the bone anabolic clastokine SLIT3, providing a possible mechanism for increased bone formation in vivo. Rac1 is rapidly activated by the inflammatory cytokine TNFα. Supracalvarial injection of TNFα caused an augmented osteoclastic response in Srgap2 cKO mice. In vitro, cells from Srgap2 cKO mice displayed increased osteoclast formation in response to TNFα. We conclude that Srgap2 plays a prominent role in limiting osteoclastogenesis during inflammation through Rac1, and restricts expression of the paracrine clastokine SLIT3, a positive regulator of bone formation. © 2019 American Society for Bone and Mineral Research.


Assuntos
Reabsorção Óssea , Proteínas Ativadoras de GTPase , Osteogênese , Animais , Osso e Ossos , Diferenciação Celular , Feminino , Proteínas Ativadoras de GTPase/fisiologia , Masculino , Proteínas de Membrana , Camundongos , Neuropeptídeos , Osteoclastos , Ligante RANK , Proteínas rac1 de Ligação ao GTP
7.
Sci Rep ; 9(1): 18692, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822692

RESUMO

Human-specific gene duplications (HSGDs) have recently emerged as key modifiers of brain development and evolution. However, the molecular mechanisms underlying the function of HSGDs remain often poorly understood. In humans, a truncated duplication of SRGAP2A led to the emergence of two human-specific paralogs: SRGAP2B and SRGAP2C. The ancestral copy SRGAP2A limits synaptic density and promotes maturation of both excitatory (E) and inhibitory (I) synapses received by cortical pyramidal neurons (PNs). SRGAP2C binds to and inhibits all known functions of SRGAP2A leading to an increase in E and I synapse density and protracted synapse maturation, traits characterizing human cortical neurons. Here, we demonstrate how the evolutionary changes that led to the emergence of SRGAP2 HSGDs generated proteins that, in neurons, are intrinsically unstable and, upon hetero-dimerization with SRGAP2A, reduce SRGAP2A levels in a proteasome-dependent manner. Moreover, we show that, despite only a few non-synonymous mutations specifically targeting arginine residues, SRGAP2C is unique compared to SRGAP2B in its ability to induce long-lasting changes in synaptic density throughout adulthood. These mutations led to the ability of SRGAP2C to inhibit SRGAP2A function and thereby contribute to the emergence of human-specific features of synaptic development during evolution.


Assuntos
Proteínas Ativadoras de GTPase/genética , Sinapses/genética , Animais , Linhagem Celular Tumoral , Evolução Molecular , Proteínas Ativadoras de GTPase/metabolismo , Duplicação Gênica/genética , Humanos , Camundongos , Neurônios/metabolismo , Organogênese , Cultura Primária de Células , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Sinapses/metabolismo
8.
Pharmacol Biochem Behav ; 162: 29-37, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28843424

RESUMO

The habenula is an evolutionarily conserved brain region comprising bilaterally paired nuclei that plays a key role in processing reward information and mediating aversive responses to negative stimuli. An important aspect underlying habenula function is relaying information between forebrain and mid- and hindbrain areas. This is mediated by its complex organization into multiple subdomains and corresponding complexity in circuit organization. Additionally, in many species habenular nuclei display left-right differences at the anatomical and functional level. In order to ensure proper functional organization of habenular circuitry, sophisticated molecular programs control the morphogenesis and wiring of the habenula during development. Knowledge of how these mechanisms shape the habenula is crucial for obtaining a complete understanding of this brain region and can provide invaluable tools to study habenula evolution and function. In this review we will discuss how these molecular mechanisms pattern the early embryonic nervous system and control the formation of the habenula, how they shape its asymmetric organization, and how these mechanisms ensure proper wiring of the habenular circuit. Finally, we will address unexplored aspects of habenula development and how these may direct future research.


Assuntos
Habenula/crescimento & desenvolvimento , Morfogênese/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Animais , Habenula/citologia , Humanos , Rede Nervosa/citologia , Neurogênese/fisiologia
9.
Neuron ; 91(2): 356-69, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27373832

RESUMO

The proper function of neural circuits requires spatially and temporally balanced development of excitatory and inhibitory synapses. However, the molecular mechanisms coordinating excitatory and inhibitory synaptogenesis remain unknown. Here we demonstrate that SRGAP2A and its human-specific paralog SRGAP2C co-regulate the development of excitatory and inhibitory synapses in cortical pyramidal neurons in vivo. SRGAP2A promotes synaptic maturation, and ultimately the synaptic accumulation of AMPA and GABAA receptors, by interacting with key components of both excitatory and inhibitory postsynaptic scaffolds, Homer and Gephyrin. Furthermore, SRGAP2A limits the density of both types of synapses via its Rac1-GAP activity. SRGAP2C inhibits all identified functions of SRGAP2A, protracting the maturation and increasing the density of excitatory and inhibitory synapses. Our results uncover a molecular mechanism coordinating critical features of synaptic development and suggest that human-specific duplication of SRGAP2 might have contributed to the emergence of unique traits of human neurons while preserving the excitation/inhibition balance.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Inibição Neural/fisiologia , Sinapses/fisiologia , Humanos , Neurogênese/genética , Neurogênese/fisiologia , Técnicas de Patch-Clamp/métodos , Receptores de GABA-A/metabolismo , Transmissão Sináptica/fisiologia
10.
Neuron ; 83(2): 372-387, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25033181

RESUMO

A dominant feature of neural circuitry is the organization of neuronal projections and synapses into specific brain nuclei or laminae. Lamina-specific connectivity is controlled by the selective expression of extracellular guidance and adhesion molecules in the target field. However, how (sub)nucleus-specific connections are established and whether axon-derived cues contribute to subdomain targeting are largely unknown. Here, we demonstrate that the lateral subnucleus of the habenula (lHb) determines its own afferent innervation by sending out efferent projections that express the cell adhesion molecule LAMP to reciprocally collect and guide dopaminergic afferents to the lHb-a phenomenon we term subdomain-mediated axon-axon signaling. This process of reciprocal axon-axon interactions cooperates with lHb-specific chemoattraction mediated by Netrin-1, which controls axon target entry, to ensure specific innervation of the lHb. We propose that cooperation between pretarget reciprocal axon-axon signaling and subdomain-restricted instructive cues provides a highly precise and general mechanism to establish subdomain-specific neural circuitry.


Assuntos
Axônios/metabolismo , Quimiotaxia/fisiologia , Habenula/fisiologia , Proteínas de Membrana Lisossomal/metabolismo , Neurônios Aferentes/fisiologia , Animais , Fatores Quimiotáticos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Camundongos , Camundongos Knockout , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Netrina-1 , Vias Neurais/fisiologia , Sinapses/fisiologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
11.
Eur J Neurosci ; 38(6): 2853-63, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23738838

RESUMO

DCC and UNC5 homologs (UNC5H) are guidance cue receptors highly expressed by mesocorticolimbic dopamine neurons. We have shown that dcc heterozygous mice exhibit increased dopamine, but not norepinephrine, innervation and function in medial prefrontal cortex. Concomitantly, dcc heterozygotes show blunted mesolimbic dopamine release and behavioral responses to stimulant drugs. These changes appear only in adulthood. Recently, we found an adolescent emergence of UNC5H expression by dopamine neurons and co-expression of DCC and UNC5H by single dopamine cells. Here, we demonstrate selective expression of unc5 homolog c mRNA by dopamine neurons in adulthood. We show that unc5c haploinsufficiency results in diminished amphetamine-induced locomotion in male and female mice. This phenotype is identical to that produced by dcc haploinsufficiency and is observed after adolescence. Notably, and similar to dcc haploinsufficiency, unc5c haploinsufficiency leads to dramatic increases in tyrosine hydroxylase expression in the medial prefrontal cortex, but not in the nucleus accumbens. In contrast, medial prefrontal cortex dopamine-ß-hydroxylase expression is not altered. We confirmed that UNC5C protein is reduced in the ventral tegmental area of unc5c heterozygous mice, but that DCC expression in this region remains unchanged. UNC5C receptors may also play a role in dopamine function and influence sensitivity to behavioral effects of stimulant drugs of abuse, at least upon first exposure. The striking similarities between the dcc and the unc5c haploinsufficient phenotypes raise the possibility that functions mediated by DCC/UNC5C complexes may be at play.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Haploinsuficiência , Locomoção/fisiologia , Receptores de Fator de Crescimento Neural/genética , Anfetamina/farmacologia , Animais , Receptor DCC , Feminino , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Genéticos , Receptores de Netrina , Receptores de Superfície Celular/genética , Receptores de Fator de Crescimento Neural/metabolismo , Receptores de Fator de Crescimento Neural/fisiologia , Proteínas Supressoras de Tumor/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/crescimento & desenvolvimento , Área Tegmentar Ventral/metabolismo
12.
J Vis Exp ; (61)2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22473326

RESUMO

Midbrain dopamine (mdDA) neurons project via the medial forebrain bundle towards several areas in the telencephalon, including the striatum(1). Reciprocally, medium spiny neurons in the striatum that give rise to the striatonigral (direct) pathway innervate the substantia nigra(2). The development of these axon tracts is dependent upon the combinatorial actions of a plethora of axon growth and guidance cues including molecules that are released by neurites or by (intermediate) target regions(3,4). These soluble factors can be studied in vitro by culturing mdDA and/or striatal explants in a collagen matrix which provides a three-dimensional substrate for the axons mimicking the extracellular environment. In addition, the collagen matrix allows for the formation of relatively stable gradients of proteins released by other explants or cells placed in the vicinity (e.g. see references 5 and 6). Here we describe methods for the purification of rat tail collagen, microdissection of dopaminergic and striatal explants, their culture in collagen gels and subsequent immunohistochemical and quantitative analysis. First, the brains of E14.5 mouse embryos are isolated and dopaminergic and striatal explants are microdissected. These explants are then (co)cultured in collagen gels on coverslips for 48 to 72 hours in vitro. Subsequently, axonal projections are visualized using neuronal markers (e.g. tyrosine hydroxylase, DARPP32, or ßIII tubulin) and axon growth and attractive or repulsive axon responses are quantified. This neuronal preparation is a useful tool for in vitro studies of the cellular and molecular mechanisms of mesostriatal and striatonigral axon growth and guidance during development. Using this assay, it is also possible to assess other (intermediate) targets for dopaminergic and striatal axons or to test specific molecular cues.


Assuntos
Técnicas de Cultura/métodos , Dissecação/métodos , Neurônios Dopaminérgicos/citologia , Neostriado/citologia , Neostriado/cirurgia , Animais , Técnicas de Cultura de Células/métodos , Colágeno/isolamento & purificação , Feminino , Mesencéfalo/citologia , Mesencéfalo/cirurgia , Camundongos , Ratos , Cauda/química , Técnicas de Cultura de Tecidos/métodos
13.
Prog Neurobiol ; 88(4): 286-301, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19523502

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive, neurodegenerative disease characterized by the selective loss of motor neurons in the brain and spinal cord. Death due to respiratory failure occurs typically 2-5 years after disease onset. The pathogenic mechanism that underlies ALS remains largely unknown, but is known to include both genetic and environmental factors. At the cellular level, pathological changes in motor neuron connections and loss of neuromuscular contacts precede motor neuron degeneration and clinical symptoms. Several lines of recent evidence support the challenging hypothesis that aberrant expression or function of axon guidance proteins such as Semaphorins, Ephrins, Netrins and Slits, normally involved in sculpting and maintaining motor neuron circuits, may induce such pathological changes in motor neuron circuitry and contribute to the pathogenic mechanism involved in ALS. In the present review, we discuss the emerging roles of axon guidance proteins in the pathogenesis of ALS. First, we summarize our current understanding of the role of axon guidance proteins during the formation of motor neuron circuits. Subsequently, we present several lines of evidence showing an association between aberrant axon guidance protein function or expression and ALS. Finally, we discuss the therapeutic potential of axon guidance proteins in understanding and treating the changes in motor neuron connectivity that underlie this debilitating disease.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Vias Eferentes/metabolismo , Cones de Crescimento/metabolismo , Neurônios Motores/metabolismo , Fatores de Crescimento Neural/metabolismo , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Vias Eferentes/efeitos dos fármacos , Vias Eferentes/fisiopatologia , Cones de Crescimento/patologia , Humanos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...