Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38649428

RESUMO

This was a double-blind, randomized, phase 2 study of adults (18-64 years) with DSM-5 diagnosis of major depressive disorder (MDD), with moderate-to-severe episode severity (Montgomery-Åsberg Depression Rating Scale [MADRS] ≥25) despite an adequate course with ongoing antidepressant for ≥6 weeks to ≤12 months. Following a double-blind placebo lead-in period (up to 3 weeks), participants were randomized to receive once daily aticaprant 10 mg or continue placebo, added to their ongoing treatment, for 6 weeks. Of 184 participants enrolled, 169 were included in safety analyses (aticaprant n = 85, placebo n = 84) and 166 in full intent-to-treat (fITT) efficacy analyses; 121 placebo lead-in non-responders (<30% reduction in MADRS total score) in fITT were included in enriched ITT (eITT) analyses. Improvement (least squares mean difference [upper limit 1-sided 80% CI] versus placebo) in MADRS total score at week 6 for aticaprant was significant versus placebo (eITT: -2.1 [-1.09], 1-sided p = 0.044; effect size (ES) 0.23; fITT -3.1 [2.21], 1-sided p = 0.002; ES 0.36). The between-group difference was larger among participants with Snaith-Hamilton Pleasure Scale (SHAPS) score greater/equal to versus less than baseline median SHAPS. The most common treatment-emergent adverse events reported for aticaprant (versus placebo) were headache (11.8% versus 7.1%), diarrhea (8.2% versus 2.4%), nasopharyngitis (5.9% versus 2.4%), and pruritus (5.9% versus 0%). One participant (1.2%) in each arm discontinued treatment due to an adverse event. In this study of participants with MDD and inadequate response to SSRI/SNRI, adjunctive treatment with aticaprant significantly reduced depressive symptoms versus placebo, without resulting in significant safety signals, supporting further investigation in larger trials.

2.
Alzheimers Dement ; 20(1): 695-708, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37774088

RESUMO

The Alzheimer's Disease Neuroimaging Initiative (ADNI) Private Partners Scientific Board (PPSB) encompasses members from industry, biotechnology, diagnostic, and non-profit organizations that have until recently been managed by the Foundation for the National Institutes of Health (FNIH) and provided financial and scientific support to ADNI programs. In this article, we review some of the major activities undertaken by the PPSB, focusing on those supporting the most recently completed National Institute on Aging grant, ADNI3, and the impact it has had on streamlining biomarker discovery and validation in Alzheimer's disease. We also provide a perspective on the gaps that may be filled with future PPSB activities as part of ADNI4 and beyond. HIGHLIGHTS: The Private Partners Scientific board (PPSB) continues to play a key role in enabling several Alzheimer's Disease Neuroimaging Initiative (ADNI) activities. PPSB working groups have led landscape assessments to provide valuable feedback on new technologies, platforms, and methods that may be taken up by ADNI in current or future iterations.


Assuntos
Doença de Alzheimer , Pesquisa Biomédica , Fatores de Coagulação Sanguínea , Humanos , Doença de Alzheimer/diagnóstico por imagem , Neuroimagem/métodos , Biomarcadores
3.
Alzheimers Dement (N Y) ; 8(1): e12325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846158

RESUMO

Introduction: Amyloid measurement provides important confirmation of pathology for Alzheimer's disease (AD) clinical trials. However, many amyloid positive (Am+) early-stage subjects do not worsen clinically during a clinical trial, and a neurodegenerative measure predictive of decline could provide critical information. Studies have shown correspondence between perfusion measured by early amyloid frames post-tracer injection and fluorodeoxyglucose (FDG) positron emission tomography (PET), but with limitations in sensitivity. Multivariate machine learning approaches may offer a more sensitive means for detection of disease related changes as we have demonstrated with FDG. Methods: Using summed dynamic florbetapir image frames acquired during the first 6 minutes post-injection for 107 Alzheimer's Disease Neuroimaging Initiative subjects, we applied optimized machine learning to develop and test image classifiers aimed at measuring AD progression. Early frame amyloid (EFA) classification was compared to that of an independently developed FDG PET AD progression classifier by scoring the FDG scans of the same subjects at the same time point. Score distributions and correlation with clinical endpoints were compared to those obtained from FDG. Region of interest measures were compared between EFA and FDG to further understand discrimination performance. Results: The EFA classifier produced a primary pattern similar to that of the FDG classifier whose expression correlated highly with the FDG pattern (R-squared 0.71), discriminated cognitively normal (NL) amyloid negative (Am-) subjects from all Am+ groups, and that correlated in Am+ subjects with Mini-Mental State Examination, Clinical Dementia Rating Sum of Boxes, and Alzheimer's Disease Assessment Scale-13-item Cognitive subscale (R = 0.59, 0.63, 0.73) and with subsequent 24-month changes in these measures (R = 0.67, 0.73, 0.50). Discussion: Our results support the ability to use EFA with a multivariate machine learning-derived classifier to obtain a sensitive measure of AD-related loss in neuronal function that correlates with FDG PET in preclinical and early prodromal stages as well as in late mild cognitive impairment and dementia. Highlights: The summed initial post-injection minutes of florbetapir positron emission tomography  correlate with fluorodeoxyglucose.A machine learning classifier enabled sensitive detection of early prodromal Alzheimer's disease.Early frame amyloid (EFA) classifier scores correlate with subsequent change in Mini-Mental State Examination, Clinical Dementia Rating Sum of Boxes, and Alzheimer's Disease Assessment Scale-13-item Cognitive subscale.EFA classifier effect sizes and clinical prediction outperformed region of interest standardized uptake value ratio.EFA classification may aid in stratifying patients to assess treatment effect.

5.
Sci Rep ; 11(1): 16172, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373571

RESUMO

[18F]JNJ-64413739 has been evaluated as PET-ligand for in vivo quantification of purinergic receptor subtype 7 receptor (P2X7R) using Logan graphical analysis with a metabolite-corrected arterial plasma input function. In the context of a P2X7R PET dose occupancy study, we evaluated a minimally invasive approach by limiting arterial sampling to baseline conditions. Meanwhile, post dose distribution volumes (VT) under blocking conditions were estimated by combining baseline blood to plasma ratios and metabolite fractions with an MR angiography driven image derived input function (IDIF). Regional postdose VT,IDIF values were compared with corresponding VT,AIF estimates using a arterial input function (AIF), in terms of absolute values, test-retest reliability and receptor occupancy. Compared to an invasive AIF approach, postdose VT,IDIF values and corresponding receptor occupancies showed only limited bias (Bland-Altman analysis: 0.06 ± 0.27 and 3.1% ± 6.4%) while demonstrating a high correlation (Spearman ρ = 0.78 and ρ = 0.98 respectively). In terms of test-retest reliability, regional intraclass correlation coefficients were 0.98 ± 0.02 for VT,IDIF compared to 0.97 ± 0.01 for VT,AIF. These results confirmed that a postdose IDIF, guided by MR angiography and using baseline blood and metabolite data, can be considered for accurate [18F]JNJ-64413739 PET quantification in a repeated PET study design, thus avoiding multiple invasive arterial sampling and increasing dosing flexibility.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Adulto , Radioisótopos de Flúor/sangue , Radioisótopos de Flúor/farmacocinética , Humanos , Imageamento Tridimensional , Ligantes , Angiografia por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/sangue , Compostos Radiofarmacêuticos/farmacocinética , Receptores Purinérgicos P2X7/sangue , Adulto Jovem
6.
J Cereb Blood Flow Metab ; 41(12): 3302-3313, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34259071

RESUMO

The [18F]-JNJ-64326067-AAA ([18F]-JNJ-067) tau tracer was evaluated in healthy older controls (HCs), mild cognitive impairment (MCI), Alzheimer's disease (AD), and progressive supranuclear palsy (PSP) participants. Seventeen subjects (4 HCs, 5 MCIs, 5 ADs, and 3 PSPs) received a [11C]-PIB amyloid PET scan, and a tau [18F]-JNJ-067 PET scan 0-90 minutes post-injection. Only MCIs and ADs were amyloid positive. The simplified reference tissue model, Logan graphical analysis distribution volume ratio, and SUVR were evaluated for quantification. The [18F]-JNJ-067 tau signal relative to the reference region continued to increase to 90 min, indicating the tracer had not reached steady state. There was no significant difference in any bilateral ROIs for MCIs or PSPs relative to HCs; AD participants showed elevated tracer relative to controls in most cortical ROIs (P < 0.05). Only AD participants showed elevated retention in the entorhinal cortex. There was off-target signal in the putamen, pallidum, thalamus, midbrain, superior cerebellar gray, and white matter. [18F]-JNJ-067 significantly correlated (p < 0.05) with Mini-Mental State Exam in entorhinal cortex and temporal meta regions. There is clear binding of [18F]-JNJ-067 in AD participants. Lack of binding in HCs, MCIs and PSPs suggests [18F]-JNJ-067 may not bind to low levels of AD-related tau or 4 R tau.


Assuntos
Doença de Alzheimer , Encéfalo , Radioisótopos de Flúor/administração & dosagem , Isoquinolinas/administração & dosagem , Tomografia por Emissão de Pósitrons , Piridinas/administração & dosagem , Compostos Radiofarmacêuticos/administração & dosagem , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Feminino , Humanos , Masculino
7.
Neuroimage ; 232: 117821, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588030

RESUMO

Accurate regional brain quantitative PET measurements, particularly when using partial volume correction, rely on robust image registration between PET and MR images. We argue here that the precision, and hence the uncertainty, of MR-PET image registration is mainly driven by the registration implementation and the quality of PET images due to their lower resolution and higher noise compared to the structural MR images. We propose a dedicated uncertainty analysis for quantifying the precision of MR-PET registration, centred around the bootstrap resampling of PET list-mode events to generate multiple PET image realisations with different noise (count) levels. The effects of PET image reconstruction parameters, such as the use of attenuation and scatter corrections and different number of iterations, on the precision and accuracy of MR-PET registration were investigated. In addition, the performance of four software packages with their default settings for rigid inter-modality image registration were considered: NiftyReg, Vinci, FSL and SPM. Four distinct PET image distributions made of two early time frames (similar to cortical FDG) and two late frames using two amyloid PET dynamic acquisitions of one amyloid positive and one amyloid negative participants were investigated. For the investigated four PET frames, the biggest impact on the uncertainty was observed between registration software packages (up to 10-fold difference in precision) followed by the reconstruction parameters. On average, the lowest uncertainty for different PET frames and brain regions was observed with SPM and two iterations of fully quantitative image reconstruction. The observed uncertainty for the varying PET count-level (from 5% to 60%) was slightly lower than for the reconstruction parameters. We also observed that the registration uncertainty in quantitative PET analysis depends on amyloid status of the considered PET frames, with increased uncertainty (up to three times) when using post-reconstruction partial volume correction. This analysis is applicable for PET data obtained from either PET/MR or PET/CT scanners.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Tomografia por Emissão de Pósitrons/normas , Incerteza , Idoso , Estudos de Coortes , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos
8.
Neuroimage ; 230: 117785, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33545349

RESUMO

Mavoglurant binds to same allosteric site on metabotropic glutamate receptor 5 (mGluR5) as [11C]-ABP688, a radioligand. This open-label, single-center pilot study estimates extent of occupancy of mGluR5 receptors following single oral doses of mavoglurant, using [11C]-ABP688 positron emission tomography (PET) imaging, in six healthy males aged 20-40 years. This study comprised three periods and six subjects were divided into two cohorts. On Day 1 (Period 1), baseline clinical data and safety samples were obtained along with PET scan. During Period 2 (1-7 days after Period 1), cohort 1 and 2 received mavoglurant 25 mg and 100 mg, respectively. During Period 3 (7 days after Period 2), cohort 1 and 2 received mavoglurant 200 mg and 400 mg, respectively. Mavoglurant showed the highest distribution volumes in the cingulate region with lower uptake in cerebellum and white matter, possibly because myelinated axonal sheets maybe devoid of mGlu5 receptors. Maximum concentrations of mavoglurant were observed around 2-3.25 h post-dose. Mavoglurant passed the blood-brain barrier and induced dose- and exposure-dependent displacement of [11C]-ABP688 from the mGluR5 receptors, 3-4 h post-administration (27%, 59%, 74%, 85% receptor occupancy for mavoglurant 25 mg, 100 mg, 200 mg, 400 mg dose, respectively). There were no severe adverse effects or clinically significant changes in safety parameters. This is the first human receptor occupancy study completed with Mavoglurant. It served to guide the dosing of mavoglurant in the past and currently ongoing clinical studies. Furthermore, it confirms the utility of [11C]-ABP688 as a unique tool to study drug-induced occupancy of mGlu5 receptors in the living human brain.


Assuntos
Encéfalo/metabolismo , Radioisótopos de Carbono/metabolismo , Indóis/metabolismo , Oximas/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Piridinas/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Administração Oral , Adulto , Encéfalo/efeitos dos fármacos , Estudos de Coortes , Relação Dose-Resposta a Droga , Voluntários Saudáveis , Humanos , Indóis/administração & dosagem , Masculino , Projetos Piloto , Ligação Proteica/fisiologia , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores
9.
Neuropsychopharmacology ; 46(5): 1004-1010, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33070154

RESUMO

JNJ-42165279 is a selective inhibitor of fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of fatty acid amides (FAA) including anandamide (AEA), palmitoylethanolamide (PEA), and N-oleoylethanolamide (OEA). We assessed the efficacy, safety, tolerability, pharmacokinetics, and pharmacodynamics of treatment with JNJ-42165279 in subjects with social anxiety disorder (SAD). This was a multicenter, double-blind, placebo-controlled study randomizing subjects to 12 weeks of treatment with either JNJ-42165279 (25 mg daily) or placebo (PBO). The primary endpoint was the change in the Liebowitz Social Anxiety Scale (LSAS) total score from baseline to end of study. Secondary endpoints included the Hamilton Anxiety Scale (HAM-A), Hamilton Depression Rating Scale (HDRS17), and the Clinical Global Impression-Improvement (CGI-I). Samples were collected for plasma concentration of AEA, PEA, OEA, and JNJ-42165279. A total of 149 subjects were enrolled with a mean baseline LSAS total score of 102.6 (SD 16.84). The mean change from baseline (SD) in LSAS total score at week 12 was numerically greater for JNJ-42165279: -29.4 (27.47) compared to PBO: -22.4 (23.57) but not significant. The percentage of subjects with ≥30% improvement from baseline in the LSAS total score was significantly higher for JNJ-42165279 (42.4%) compared to PBO (23.6%) (p value = 0.04). The percentage of subjects with a CGI-I score of much or very much improved was also significantly higher for JNJ-42165279 (44.1%) than for PBO (23.6%) (p value = 0.02). The drug was well tolerated. JNJ-42165279 appears to elicit an anxiolytic effect in subjects with SAD although trough concentrations with 25 mg once daily appeared to be insufficient to completely inhibit FAAH activity which may have led to suboptimal efficacy. ClinicalTrials.gov Identifier: NCT02432703.


Assuntos
Fobia Social , Amidoidrolases , Relação Dose-Resposta a Droga , Método Duplo-Cego , Humanos , Piperazinas , Resultado do Tratamento
10.
Neurology ; 95(11): e1538-e1553, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32675080

RESUMO

OBJECTIVE: To develop and evaluate a model for staging cortical amyloid deposition using PET with high generalizability. METHODS: Three thousand twenty-seven individuals (1,763 cognitively unimpaired [CU], 658 impaired, 467 with Alzheimer disease [AD] dementia, 111 with non-AD dementia, and 28 with missing diagnosis) from 6 cohorts (European Medical Information Framework for AD, Alzheimer's and Family, Alzheimer's Biomarkers in Daily Practice, Amsterdam Dementia Cohort, Open Access Series of Imaging Studies [OASIS]-3, Alzheimer's Disease Neuroimaging Initiative [ADNI]) who underwent amyloid PET were retrospectively included; 1,049 individuals had follow-up scans. With application of dataset-specific cutoffs to global standard uptake value ratio (SUVr) values from 27 regions, single-tracer and pooled multitracer regional rankings were constructed from the frequency of abnormality across 400 CU individuals (100 per tracer). The pooled multitracer ranking was used to create a staging model consisting of 4 clusters of regions because it displayed a high and consistent correlation with each single-tracer ranking. Relationships between amyloid stage, clinical variables, and longitudinal cognitive decline were investigated. RESULTS: SUVr abnormality was most frequently observed in cingulate, followed by orbitofrontal, precuneal, and insular cortices and then the associative, temporal, and occipital regions. Abnormal amyloid levels based on binary global SUVr classification were observed in 1.0%, 5.5%, 17.9%, 90.0%, and 100.0% of individuals in stage 0 to 4, respectively. Baseline stage predicted decline in Mini-Mental State Examination (MMSE) score (ADNI: n = 867, F = 67.37, p < 0.001; OASIS: n = 475, F = 9.12, p < 0.001) and faster progression toward an MMSE score ≤25 (ADNI: n = 787, hazard ratio [HR]stage1 2.00, HRstage2 3.53, HRstage3 4.55, HRstage4 9.91, p < 0.001; OASIS: n = 469, HRstage4 4.80, p < 0.001). CONCLUSION: The pooled multitracer staging model successfully classified the level of amyloid burden in >3,000 individuals across cohorts and radiotracers and detects preglobal amyloid burden and distinct risk profiles of cognitive decline within globally amyloid-positive individuals.


Assuntos
Amiloidose/diagnóstico por imagem , Radioisótopos de Carbono , Córtex Cerebral/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons/métodos , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Amiloidose/metabolismo , Córtex Cerebral/metabolismo , Disfunção Cognitiva/metabolismo , Estudos de Coortes , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade
11.
Eur J Nucl Med Mol Imaging ; 47(13): 3176-3185, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32535652

RESUMO

PURPOSE: The accumulation of misfolded tau is a common feature of several neurodegenerative disorders, with Alzheimer's disease (AD) being the most common. Earlier we identified JNJ-64326067, a novel isoquinoline derivative with high affinity and selectivity for tau aggregates from human AD brain. We report the dosimetry of [18F] JNJ-64326067 and results of a proof-of-concept study comparing subjects with probable Alzheimer's disease to age-matched healthy controls. METHODS: [18F] JNJ-64326067 PET scans were acquired for 90 min and then from 120 to 180 min in 5 participants with [18F]-florbetapir PET amyloid positive probable AD (73 ± 9 years) and 5 [18F]-florbetapir PET amyloid negative healthy controls (71 ± 7 years). Whole-body [18F] JNJ-64326067 PET CT scans were acquired in six healthy subjects for 5.5 h in 3 scanning sessions. Brain PET scans were visually reviewed. Regional quantification included kinetic analysis of distribution volume ration (DVR) estimated by Logan graphical analysis over the entire scan and static analysis of SUVr in late frames. Both methods used ventral cerebellar cortex as a reference region. RESULTS: One of the healthy controls had focal areas of PET signal in occipital and parietal cortex underlying the site of a gunshot injury as an adolescent; the other four healthy subjects had no tau brain signal. Four of the 5 AD participants had visually apparent retention of [18F] JNJ-64326067 in relevant cortical regions. One of the AD subjects was visually negative. Cortical signal in visually positive subjects approached steady state by 120 min. Temporal and frontal cortical SUVr/DVR values in visually positive AD subjects ranged from 1.21 to 3.09/1.2 to 2.18 and from 0.92 to 1.28/0.91 to 1.16 in healthy controls. Whole-body effective dose was estimated to be 0.0257 mSv/MBq for females and 0.0254 mSv/MBq for males. CONCLUSIONS: [18F] JNJ-64326067 could be useful for detection and quantitation of tau aggregates.


Assuntos
Doença de Alzheimer , Adolescente , Doença de Alzheimer/diagnóstico por imagem , Compostos de Anilina , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Feminino , Radioisótopos de Flúor , Humanos , Isoquinolinas , Cinética , Masculino , Tomografia por Emissão de Pósitrons , Piridinas , Compostos Radiofarmacêuticos , Proteínas tau/metabolismo
12.
Clin Transl Sci ; 13(2): 309-317, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31642608

RESUMO

Positron emission tomography (PET) provides useful information in target engagement or receptor occupancy in the brain for central nervous system (CNS) drug development, however, dose selection for human PET studies is challenging and largely empirical. Here, we describe a translational pharmacokinetic/pharmacodynamic (PK/PD) modeling work to inform dose selection for a human PET study of JNJ-54175446, a CNS-penetrating P2X7 receptor antagonist. Models were developed using data on monkey brain occupancy and plasma drug exposures from a monkey PET study and early human clinical studies that provided data on drug exposures and human ex vivo-stimulated peripheral interleukin (IL)-1ß release. The observed plasma PK of JNJ-54175446 in human was adequately described by a one-compartment model with parallel zero-order and first-order absorption and first-order elimination. An exposure-occupancy model was extrapolated from monkey to human assuming a similar unbound potency (all other model parameters remained unchanged). This model was then used to simulate human brain occupancy to guide human PET study dose selection, together with the human population PK model. The corroboration of model predicted occupancy by the observed occupancy data from the human PET study supports the use of a monkey as a predictive model for human PET target engagement. Potency estimate for brain occupancy was generally comparable to that for the suppression of the provoked peripheral IL-1ß release ex vivo, indicating that blood IL-1ß release may be used as a surrogate of central occupancy for JNJ-54175446. Translational PK/PD modeling approach could be used for selecting optimal doses for human PET and other clinical studies.


Assuntos
Tomografia por Emissão de Pósitrons , Antagonistas do Receptor Purinérgico P2X/farmacocinética , Piridinas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Receptores Purinérgicos P2X7/metabolismo , Triazóis/farmacocinética , Adolescente , Adulto , Idoso , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ensaios Clínicos Fase I como Assunto , Simulação por Computador , Conjuntos de Dados como Assunto , Relação Dose-Resposta a Droga , Desenvolvimento de Medicamentos/métodos , Feminino , Radioisótopos de Flúor/administração & dosagem , Humanos , Interleucina-1beta/metabolismo , Macaca mulatta , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Antagonistas do Receptor Purinérgico P2X/administração & dosagem , Piridinas/administração & dosagem , Cintilografia , Compostos Radiofarmacêuticos/administração & dosagem , Ensaios Clínicos Controlados Aleatórios como Assunto , Triazóis/administração & dosagem , Adulto Jovem
13.
Eur J Nucl Med Mol Imaging ; 46(10): 2051-2064, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31243495

RESUMO

PURPOSE: The P2X7 receptor (P2X7R) is an ATP-gated ion channel predominantly expressed on activated microglia and is important in neurodegenerative diseases including Parkinson's disease (PD). In this first-in-human study, we investigated [11C]JNJ54173717 ([11C]JNJ717), a selective P2X7R tracer, in healthy volunteers (HV) and PD patients. Biodistribution, dosimetry, kinetic modelling and short-term test-retest variation (TRV), as well as possible genotype effects, were investigated. METHODS: Biodistribution and radiation dosimetry studies were performed in three HV (mean age 30 ± 2 years, two women) using whole-body PET/CT. The most appropriate kinetic model was determined in 11 HV (mean age 62 ± 10 years, six women) and 10 PD patients (mean age 64 ± 8 years, three women; mean UPDRS motor score 21 ± 8) using 90-min dynamic simultaneous PET/MR scans. The total volume of distribution (VT) was calculated using a one-tissue and a two-tissue compartment model (1TCM, 2TCM) and Logan graphical analysis, and its time stability was assessed. Seven subjects underwent retest scans (mean age 60 ± 13 years, four HV, one woman). A group analysis was performed to compare PD patients and HV. Finally, 13 exons of P2X7R were genotyped in all subjects included in the second part of the study. RESULTS: The mean effective dose was 4.47 ± 0.32 µSv/MBq, with the highest absorbed doses to the gallbladder, liver and small intestine. A reversible 2TCM was the most appropriate kinetic model with relatively homogeneous VT values in the grey and white matter. Average VT values were 3.4 ± 0.8 in HV and 3.3 ± 0.7 in PD patients, with no significant difference between the groups, but a possible genotype effect (rs3751143) was identified which can affect VT. Average TRV was 10-15%. The stability of VT over time allowed a reduction in scan time to 70 min. CONCLUSION: [11C]JNJ717 is safe and suitable for quantifying P2X7R expression in human brain. In this pilot study, no significant differences in P2X7R binding were found between HV and PD patients. The results also suggest that genotype effects need to be incorporated in future P2X7R PET analyses.


Assuntos
Doença de Parkinson/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos/farmacocinética , Receptores Purinérgicos P2X7/metabolismo , Adulto , Idoso , Variação Biológica da População , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Carbono/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Polimorfismo de Nucleotídeo Único , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/normas , Ligação Proteica , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/química , Receptores Purinérgicos P2X7/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
14.
Alzheimers Dement ; 15(3): 388-399, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30339801

RESUMO

INTRODUCTION: Reimbursement of amyloid-positron emission tomography (PET) is lagging due to the lack of definitive evidence on its clinical utility and cost-effectiveness. The Amyloid Imaging to Prevent Alzheimer's Disease-Diagnostic and Patient Management Study (AMYPAD-DPMS) is designed to fill this gap. METHODS: AMYPAD-DPMS is a phase 4, multicenter, prospective, randomized controlled study. Nine hundred patients with subjective cognitive decline plus, mild cognitive impairment, and dementia possibly due to Alzheimer's disease will be randomized to ARM1, amyloid-PET performed early in the diagnostic workup; ARM2, amyloid-PET performed after 8 months; and ARM3, amyloid-PET performed whenever the physician chooses to do so. ENDPOINTS: The primary endpoint is the difference between ARM1 and ARM2 in the proportion of patients receiving a very-high-confidence etiologic diagnosis after 3 months. Secondary endpoints address diagnosis and diagnostic confidence, diagnostic/therapeutic management, health economics and patient-related outcomes, and methods for image quantitation. EXPECTED IMPACTS: AMYPAD-DPMS will supply physicians and health care payers with real-world data to plan management decisions.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Amiloide , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/economia , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Encéfalo/metabolismo , Protocolos de Ensaio Clínico como Assunto , Ensaios Clínicos Fase IV como Assunto , Disfunção Cognitiva/economia , Disfunção Cognitiva/metabolismo , Análise Custo-Benefício , Gerenciamento Clínico , Humanos , Pessoa de Meia-Idade , Estudos Multicêntricos como Assunto , Tomografia por Emissão de Pósitrons/economia , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Tempo
15.
J Nucl Med ; 60(5): 683-690, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30262518

RESUMO

The P2X7 receptor (P2X7R) is an adenosine triphosphate-gated ion channel that is predominantly expressed on microglial cells in the central nervous system. We report the clinical qualification of P2X7-specific PET ligand 18F-JNJ-64413739 in healthy volunteers, including dosimetry, kinetic modeling, test-retest variability, and blocking by the P2X7 antagonist JNJ-54175446. Methods: Whole-body dosimetry was performed in 3 healthy male subjects by consecutive whole-body PET/CT scanning, estimation of the normalized cumulated activity, and calculation of the effective dose using OLINDA (v1.1). Next, 5 healthy male subjects underwent a 120-min dynamic 18F-JNJ-64413739 PET/MRI scan with arterial blood sampling to determine the appropriate kinetic model. For this purpose, 1- and 2-tissue compartment models and Logan graphic analysis (LGA) were evaluated for estimating regional volumes of distribution (VT). PET/MRI scanning was repeated in 4 of these subjects to evaluate medium-term test-retest variability (interscan interval, 26-97 d). For the single-dose occupancy study, 8 healthy male subjects underwent baseline and postdose 18F-JNJ-64413739 PET/MRI scans 4-6 h after the administration of a single oral dose of JNJ-54175446 (dose range, 5-300 mg). P2X7 occupancies were estimated using a Lassen plot and regional baseline and postdose VTResults: The average (mean ± SD) effective dose was 22.0 ± 1.0 µSv/MBq. The 2-tissue compartment model was the most appropriate kinetic model, with LGA showing very similar results. Regional 2-tissue compartment model VT values were about 3 and were rather homogeneous across all brain regions, with slightly higher estimates for the thalamus, striatum, and brain stem. Between-subject VT variability was relatively high, with cortical VT showing an approximate 3-fold range across subjects. As for time stability, the acquisition time could be reduced to 90 min. The average regional test-retest variability values were 10.7% ± 2.2% for 2-tissue compartment model VT and 11.9% ± 2.2% for LGA VT P2X7 occupancy approached saturation for single doses of JNJ-54175446 higher than 50 mg, and no reference region could be identified. Conclusion:18F-JNJ-64413739 is a suitable PET ligand for the quantification of P2X7R expression in the human brain. It can be used to provide insight into P2X7R expression in health and disease, to evaluate target engagement by P2X7 antagonists, and to guide dose selection.


Assuntos
Modelos Biológicos , Peptídeos/farmacocinética , Tomografia por Emissão de Pósitrons , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Triazóis/farmacologia , Adulto , Voluntários Saudáveis , Humanos , Cinética , Ligantes , Masculino , Radiometria , Reprodutibilidade dos Testes , Distribuição Tecidual/efeitos dos fármacos , Adulto Jovem
16.
Alzheimers Res Ther ; 10(1): 112, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30376881

RESUMO

BACKGROUND: In Alzheimer's disease (AD), pathological changes may arise up to 20 years before the onset of dementia. This pre-dementia window provides a unique opportunity for secondary prevention. However, exposing non-demented subjects to putative therapies requires reliable biomarkers for subject selection, stratification, and monitoring of treatment. Neuroimaging allows the detection of early pathological changes, and longitudinal imaging can assess the effect of interventions on markers of molecular pathology and rates of neurodegeneration. This is of particular importance in pre-dementia AD trials, where clinical outcomes have a limited ability to detect treatment effects within the typical time frame of a clinical trial. We review available evidence for the use of neuroimaging in clinical trials in pre-dementia AD. We appraise currently available imaging markers for subject selection, stratification, outcome measures, and safety in the context of such populations. MAIN BODY: Amyloid positron emission tomography (PET) is a validated in-vivo marker of fibrillar amyloid plaques. It is appropriate for inclusion in trials targeting the amyloid pathway, as well as to monitor treatment target engagement. Amyloid PET, however, has limited ability to stage the disease and does not perform well as a prognostic marker within the time frame of a pre-dementia AD trial. Structural magnetic resonance imaging (MRI), providing markers of neurodegeneration, can improve the identification of subjects at risk of imminent decline and hence play a role in subject inclusion. Atrophy rates (either hippocampal or whole brain), which can be reliably derived from structural MRI, are useful in tracking disease progression and have the potential to serve as outcome measures. MRI can also be used to assess comorbid vascular pathology and define homogeneous groups for inclusion or for subject stratification. Finally, MRI also plays an important role in trial safety monitoring, particularly the identification of amyloid-related imaging abnormalities (ARIA). Tau PET to measure neurofibrillary tangle burden is currently under development. Evidence to support the use of advanced MRI markers such as resting-state functional MRI, arterial spin labelling, and diffusion tensor imaging in pre-dementia AD is preliminary and requires further validation. CONCLUSION: We propose a strategy for longitudinal imaging to track early signs of AD including quantitative amyloid PET and yearly multiparametric MRI.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/prevenção & controle , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos , Biomarcadores , Encéfalo/patologia , Encéfalo/fisiopatologia , Progressão da Doença , Humanos , Estudos Longitudinais , Prevenção Secundária
17.
Clin Transl Sci ; 11(4): 397-404, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29575526

RESUMO

Inhibition of fatty acid amide hydrolase (FAAH) potentiates endocannabinoid activity and is hypothesized to have therapeutic potential for mood and anxiety disorders and pain. The clinical profile of JNJ-42165279, an oral selective FAAH inhibitor, was assessed by investigating the pharmacokinetics, pharmacodynamics, safety, and binding to FAAH in the brain of healthy human volunteers. Concentrations of JNJ-42165279 (plasma, cerebrospinal fluid (CSF), urine) and fatty acid amides (FAA; plasma, CSF), and FAAH activity in leukocytes was determined in a phase I multiple ascending dose study. A positron emission tomography study with the FAAH tracer [11 C]MK3168 was conducted to determine brain FAAH occupancy after single and multiple doses of JNJ-42165279. JNJ-42165279 administration resulted in an increase in plasma and CSF FAA. Significant blocking of brain FAAH binding of [11 C]MK3168 was observed after pretreatment with JNJ-42165279. JNJ-42165279 produces potent central and peripheral FAAH inhibition. Saturation of brain FAAH occupancy occurred with doses ≥10 mg of JNJ-42165279. No safety concerns were identified.


Assuntos
Amidoidrolases/antagonistas & inibidores , Encéfalo/metabolismo , Endocanabinoides/metabolismo , Inibidores Enzimáticos/farmacologia , Piperazinas/farmacologia , Administração Oral , Adulto , Idoso , Idoso de 80 Anos ou mais , Amidoidrolases/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Endocanabinoides/sangue , Endocanabinoides/líquido cefalorraquidiano , Feminino , Voluntários Saudáveis , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Imagem Molecular/métodos , Tomografia por Emissão de Pósitrons/métodos , Traçadores Radioativos , Adulto Jovem
18.
Neurology ; 90(10): e877-e886, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29429971

RESUMO

OBJECTIVE: To evaluate whether amyloid-related imaging abnormalities with edema/effusion (ARIA-E) observed in bapineuzumab clinical trials was associated with specific biomarker patterns. METHODS: Bapineuzumab, an anti-ß-amyloid monoclonal antibody, was evaluated in patients with mild to moderate Alzheimer disease. Amyloid PET imaging, CSF biomarkers, or volumetric MRI (vMRI) were assessed. RESULTS: A total of 1,512 participants underwent one or more biomarker assessments; 154 developed incident ARIA-E. No differences were observed at baseline between ARIA-E and non-ARIA-E participants in brain amyloid burden by PET, the majority of vMRI measures, or CSF biomarkers, with the exception of lower baseline CSF Aß42 in APOE ε4 noncarrier ARIA-E vs non-ARIA-E groups (bapineuzumab non-ARIA-E p = 0.027; placebo non-ARIA-E p = 0.012). At week 71, bapineuzumab-treated participants with ARIA-E vs non-ARIA-E showed greater reduction in brain amyloid PET, greater reductions in CSF phosphorylated tau (p-tau) (all comparisons p < 0.01), and total tau (t-tau) (all comparisons p < 0.025), and greater hippocampal volume reduction and ventricular enlargement (all p < 0.05). Greater reduction in CSF Aß40 concentrations was observed for ARIA-E versus both non-ARIA-E groups (bapineuzumab/placebo non-ARIA-E p = 0.015/0.049). No group differences were observed at week 71 for changes in whole brain volume or CSF Aß42. CONCLUSIONS: Baseline biomarkers largely do not predict risk for developing ARIA-E. ARIA-E was associated with significant longitudinal changes in several biomarkers, with larger reductions in amyloid PET and CSF p-tau and t-tau concentrations, and paradoxically greater hippocampal volume reduction and ventricular enlargement, suggesting that ARIA-E in bapineuzumab-treated cases may be related to increased Aß efflux from the brain and affecting downstream pathogenic processes.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/tratamento farmacológico , Anticorpos Monoclonais Humanizados/uso terapêutico , Biomarcadores/líquido cefalorraquidiano , Fatores Imunológicos/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Compostos de Anilina/farmacocinética , Apolipoproteínas E/genética , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Entrevista Psiquiátrica Padronizada , Pessoa de Meia-Idade , Fragmentos de Peptídeos/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons , Tiazóis/farmacocinética , Resultado do Tratamento , Proteínas tau/líquido cefalorraquidiano
19.
Alzheimers Res Ther ; 10(1): 1, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29370870

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia in the elderly population. In this study, we used the APP/PS1 transgenic mouse model to explore the feasibility of using diffusion kurtosis imaging (DKI) as a tool for the early detection of microstructural changes in the brain due to amyloid-ß (Aß) plaque deposition. METHODS: We longitudinally acquired DKI data of wild-type (WT) and APP/PS1 mice at 2, 4, 6 and 8 months of age, after which these mice were sacrificed for histological examination. Three additional cohorts of mice were also included at 2, 4 and 6 months of age to allow voxel-based co-registration between diffusion tensor and diffusion kurtosis  metrics and immunohistochemistry. RESULTS: Changes were observed in diffusion tensor (DT) and diffusion kurtosis (DK) metrics in many of the 23 regions of interest that were analysed. Mean and axial kurtosis were greatly increased owing to Aß-induced pathological changes in the motor cortex of APP/PS1 mice at 4, 6 and 8 months of age. Additionally, fractional anisotropy (FA) was decreased in APP/PS1 mice at these respective ages. Linear discriminant analysis of the motor cortex data indicated that combining diffusion tensor and diffusion kurtosis metrics permits improved separation of WT from APP/PS1 mice compared with either diffusion tensor or diffusion kurtosis metrics alone. We observed that mean kurtosis and FA are the critical metrics for a correct genotype classification. Furthermore, using a newly developed platform to co-register the in vivo diffusion-weighted magnetic resonance imaging with multiple 3D histological stacks, we found high correlations between DK metrics and anti-Aß (clone 4G8) antibody, glial fibrillary acidic protein, ionised calcium-binding adapter molecule 1 and myelin basic protein immunohistochemistry. Finally, we observed reduced FA in the septal nuclei of APP/PS1 mice at all ages investigated. The latter was at least partially also observed by voxel-based statistical parametric mapping, which showed significantly reduced FA in the septal nuclei, as well as in the corpus callosum, of 8-month-old APP/PS1 mice compared with WT mice. CONCLUSIONS: Our results indicate that DKI metrics hold tremendous potential for the early detection and longitudinal follow-up of Aß-induced pathology.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador , Placa Amiloide/diagnóstico por imagem , Envelhecimento/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Diagnóstico Precoce , Estudos de Viabilidade , Seguimentos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Imuno-Histoquímica , Estudos Longitudinais , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...