Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(6): e17356, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38853470

RESUMO

Seasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey. Using data from 19 sites spanning a wide temperature gradient from the Subarctic to the High Arctic, we investigated the effects of temperature on the phenology and biomass of arthropods available to shorebirds during their short breeding season at high latitudes. We hypothesized that prolonged exposure to warmer summer temperatures would generate earlier peaks in arthropod biomass, as well as higher peak and seasonal biomass. Across the temperature gradient encompassed by our study sites (>10°C in average summer temperatures), we found a 3-day shift in average peak date for every increment of 80 cumulative thawing degree-days. Interestingly, we found a linear relationship between temperature and arthropod biomass only below temperature thresholds. Higher temperatures were associated with higher peak and seasonal biomass below 106 and 177 cumulative thawing degree-days, respectively, between June 5 and July 15. Beyond these thresholds, no relationship was observed between temperature and arthropod biomass. Our results suggest that prolonged exposure to elevated temperatures can positively influence prey availability for some arctic birds. This positive effect could, in part, stem from changes in arthropod assemblages and may reduce the risk of trophic mismatch.


Assuntos
Artrópodes , Biomassa , Estações do Ano , Temperatura , Animais , Regiões Árticas , Artrópodes/fisiologia , Mudança Climática , Cadeia Alimentar , Charadriiformes/fisiologia , Migração Animal
2.
Proc Biol Sci ; 291(2019): 20231785, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38531405

RESUMO

Shifts in phenology are among the key responses of organisms to climate change. When rates of phenological change differ between interacting species they may result in phenological asynchrony. Studies have found conflicting patterns concerning the direction and magnitude of changes in synchrony, which have been attributed to biological factors. A hitherto overlooked additional explanation are differences in the currency used to quantify resource phenology, such as abundance and biomass. Studying an insectivorous bird (the sanderling) and its prey, we show that the median date of cumulative arthropod biomass occurred, on average, 6.9 days after the median date of cumulative arthropod abundance. In some years this difference could be as large as 21 days. For 23 years, hatch dates of sanderlings became less synchronized with the median date of arthropod abundance, but more synchronized with the median date of arthropod biomass. The currency-specific trends can be explained by our finding that mean biomass per arthropod specimen increased with date. Using a conceptual simulation, we show that estimated rates of phenological change for abundance and biomass can differ depending on temporal shifts in the size distribution of resources. We conclude that studies of trophic mismatch based on different currencies for resource phenology can be incompatible with each other.


Assuntos
Artrópodes , Charadriiformes , Animais , Estações do Ano , Aves , Biomassa , Mudança Climática , Temperatura
3.
Mol Ecol ; 33(2): e17205, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37971141

RESUMO

Genomic studies of species threatened by extinction are providing crucial information about evolutionary mechanisms and genetic consequences of population declines and bottlenecks. However, to understand how species avoid the extinction vortex, insights can be drawn by studying species that thrive despite past declines. Here, we studied the population genomics of the muskox (Ovibos moschatus), an Ice Age relict that was at the brink of extinction for thousands of years at the end of the Pleistocene yet appears to be thriving today. We analysed 108 whole genomes, including present-day individuals representing the current native range of both muskox subspecies, the white-faced and the barren-ground muskox (O. moschatus wardi and O. moschatus moschatus) and a ~21,000-year-old ancient individual from Siberia. We found that the muskox' demographic history was profoundly shaped by past climate changes and post-glacial re-colonizations. In particular, the white-faced muskox has the lowest genome-wide heterozygosity recorded in an ungulate. Yet, there is no evidence of inbreeding depression in native muskox populations. We hypothesize that this can be explained by the effect of long-term gradual population declines that allowed for purging of strongly deleterious mutations. This study provides insights into how species with a history of population bottlenecks, small population sizes and low genetic diversity survive against all odds.


Assuntos
Metagenômica , Resiliência Psicológica , Humanos , Animais , Recém-Nascido , Evolução Biológica , Genômica , Ruminantes/genética , Variação Genética/genética
4.
Sci Total Environ ; 903: 166567, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633375

RESUMO

The bioavailability of essential and non-essential elements in vegetation is expected to influence the performance of free-ranging terrestrial herbivores. However, attempts to relate the use of geochemical landscapes by animal populations directly to reproductive output are currently lacking. Here we measured concentrations of 14 essential and non-essential elements in soil and vegetation samples collected in the Zackenberg valley, northeast Greenland, and linked these to environmental conditions to spatially predict and map geochemical landscapes. We then used long-term (1996-2021) survey data of muskoxen (Ovibos moschatus) to quantify annual variation in the relative use of essential and non-essential elements in vegetated sites and their relationship to calf recruitment the following year. Results showed that the relative use of the geochemical landscape by muskoxen varied substantially between years and differed among elements. Selection for vegetated sites with higher levels of the essential elements N, Cu, Se, and Mo was positively linked to annual calf recruitment. In contrast, selection for vegetated sites with higher concentrations of the non-essential elements As and Pb was negatively correlated to annual calf recruitment. Based on the concentrations measured in our study, we found no apparent associations between annual calf recruitment and levels of C, Mn, Co, Zn, Cd, Ba, Hg, and C:N ratio in the vegetation. We conclude that the spatial distribution and access to essential and non-essential elements are important drivers of reproductive output in muskoxen, which may also apply to other wildlife populations. The value of geochemical landscapes to assess habitat-performance relationships is likely to increase under future environmental change.

5.
Polar Biol ; 46(9): 837-848, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37589013

RESUMO

The Arctic is warming at an alarming rate. While changes in plant community composition and phenology have been extensively reported, the effects of climate change on reproduction remain poorly understood. We quantified multidecadal changes in flower density for nine tundra plant species at a low- and a high-Arctic site in Greenland. We found substantial changes in flower density over time, but the temporal trends and drivers of flower density differed both between species and sites. Total flower density increased over time at the low-Arctic site, whereas the high-Arctic site showed no directional change. Within and between sites, the direction and rate of change differed among species, with varying effects of summer temperature, the temperature of the previous autumn and the timing of snowmelt. Finally, all species showed a strong trade-off in flower densities between successive years, suggesting an effective cost of reproduction. Overall, our results reveal region- and taxon-specific variation in the sensitivity and responses of co-occurring species to shared climatic drivers, and a clear cost of reproductive investment among Arctic plants. The ultimate effects of further changes in climate may thus be decoupled between species and across space, with critical knock-on effects on plant species dynamics, food web structure and overall ecosystem functioning. Supplementary Information: The online version contains supplementary material available at 10.1007/s00300-023-03164-2.

6.
Curr Biol ; 33(15): 3244-3249.e3, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37499666

RESUMO

With the global change in climate, the Arctic has been pinpointed as the region experiencing the fastest rates of change. As a result, Arctic biological responses-such as shifts in phenology-are expected to outpace those at lower latitudes. 15 years ago, a decade-long dataset from Zackenberg in High Arctic Greenland revealed rapid rates of phenological change.1 To explore how the timing of spring phenology has developed since, we revisit the Zackenberg time series on flowering plants, arthropods, and birds. Drawing on the full 25-year period of 1996-2020, we find little directional change in the timing of events despite ongoing climatic change. We attribute this finding to a shift in the temporal patterns of climate conditions, from previous directional change to current high inter-annual variability. Additionally, some taxa appear to have reached the limits of their phenological responses, resulting in a leveling off in their phenological responses in warm years. Our findings demonstrate the importance of long-term monitoring of taxa from across trophic levels within the community, allowing for detecting shifts in sensitivities and responses and thus for updated inference in the light of added information.


Assuntos
Mudança Climática , Clima , Animais , Temperatura , Estações do Ano , Regiões Árticas , Flores/fisiologia
7.
Ecol Monogr ; 93(1): e1551, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37035419

RESUMO

Insects provide key pollination services in most terrestrial biomes, but this service depends on a multistep interaction between insect and plant. An insect needs to visit a flower, receive pollen from the anthers, move to another conspecific flower, and finally deposit the pollen on a receptive stigma. Each of these steps may be affected by climate change, and focusing on only one of them (e.g., flower visitation) may miss important signals of change in service provision. In this study, we combine data on visitation, pollen transport, and single-visit pollen deposition to estimate functional outcomes in the high Arctic plant-pollinator network of Zackenberg, Northeast Greenland, a model system for global warming-associated impacts in pollination services. Over two decades of rapid climate warming, we sampled the network repeatedly: in 1996, 1997, 2010, 2011, and 2016. Although the flowering plant and insect communities and their interactions varied substantially between years, as expected based on highly variable Arctic weather, there was no detectable directional change in either the structure of flower-visitor networks or estimated pollen deposition. For flower-visitor networks compiled over a single week, species phenologies caused major within-year variation in network structure despite consistency across years. Weekly networks for the middle of the flowering season emerged as especially important because most pollination service can be expected to be provided by these large, highly nested networks. Our findings suggest that pollination ecosystem service in the high Arctic is remarkably resilient. This resilience may reflect the plasticity of Arctic biota as an adaptation to extreme and unpredictable weather. However, most pollination service was contributed by relatively few fly taxa (Diptera: Spilogona sanctipauli and Drymeia segnis [Muscidae] and species of Rhamphomyia [Empididae]). If these key pollinators are negatively affected by climate change, network structure and the pollination service that depends on it would be seriously compromised.

8.
Rapid Commun Mass Spectrom ; 37(6): e9470, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36601893

RESUMO

RATIONALE: Analysis of stable isotopes in tissue and excreta may provide information about animal diets and their nutritional state. As body condition may have a major influence on reproduction, linking stable isotope values to animal demographic rates may help unravel the drivers behind animal population dynamics. METHODS: We performed sequential analysis of δ15 N values in guard hair from 21 muskoxen (Ovibos moschatus) from Zackenberg in high arctic Greenland. We were able to reconstruct the dietary history for the population over a 5-year period with contrasting environmental conditions. We examined the linkage between guard hair δ15 N values in 12 three-month periods and muskox calf recruitment to detect critical periods for muskox reproduction. Finally, we conducted similar analyses of the correlation between environmental conditions (snow depth and air temperature) and calf recruitment. RESULTS: δ15 N values exhibited a clear seasonal pattern with high levels in summer and low levels in winter. However, large inter-annual variation was found in winter values, suggesting varying levels of catabolism depending on snow conditions. In particular δ15 N values during January-March were linked to muskox recruitment rates, with higher values coinciding with lower calf recruitment. δ15 N values were a better predictor of muskox recruitment rates than environmental conditions. CONCLUSIONS: Although environmental conditions may ultimately determine the dietary δ15 N signal in muskox guard hairs, muskox calf recruitment was more strongly correlated with δ15 N values than ambient snow and temperature. The period January-March, corresponding to late gestation, appears particularly critical for muskox reproduction.


Assuntos
Dieta , Ruminantes , Animais , Gravidez , Feminino , Regiões Árticas , Cabelo , Estado Nutricional
9.
Glob Chang Biol ; 28(22): 6602-6617, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36031712

RESUMO

Processes leading to range contractions and population declines of Arctic megafauna during the late Pleistocene and early Holocene are uncertain, with intense debate on the roles of human hunting, climatic change, and their synergy. Obstacles to a resolution have included an overreliance on correlative rather than process-explicit approaches for inferring drivers of distributional and demographic change. Here, we disentangle the ecological mechanisms and threats that were integral in the decline and extinction of the muskox (Ovibos moschatus) in Eurasia and in its expansion in North America using process-explicit macroecological models. The approach integrates modern and fossil occurrence records, ancient DNA, spatiotemporal reconstructions of past climatic change, species-specific population ecology, and the growth and spread of anatomically modern humans. We show that accurately reconstructing inferences of past demographic changes for muskox over the last 21,000 years require high dispersal abilities, large maximum densities, and a small Allee effect. Analyses of validated process-explicit projections indicate that climatic change was the primary driver of muskox distribution shifts and demographic changes across its previously extensive (circumpolar) range, with populations responding negatively to rapid warming events. Regional analyses show that the range collapse and extinction of the muskox in Europe (~13,000 years ago) was likely caused by humans operating in synergy with climatic warming. In Canada and Greenland, climatic change and human activities probably combined to drive recent population sizes. The impact of past climatic change on the range and extinction dynamics of muskox during the Pleistocene-Holocene transition signals a vulnerability of this species to future increased warming. By better establishing the ecological processes that shaped the distribution of the muskox through space and time, we show that process-explicit macroecological models have important applications for the future conservation and management of this iconic species in a warming Arctic.


Assuntos
DNA Antigo , Ruminantes , Animais , Regiões Árticas , Mudança Climática , Fósseis , Humanos
10.
Sci Total Environ ; 827: 153877, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35218841

RESUMO

Grazing herbivores may affect soil microbial communities indirectly by impacting soil structure and vegetation composition. In high arctic environments, this impact is poorly elucidated, while having potentially wide-reaching effects on the ecosystem. This study examines how a key arctic herbivore, the muskox Ovibos moschatus, affects the soil microbial community in a high arctic fen. Environmental DNA was extracted from soil samples taken from grazed control plots and from muskox exclosures established 5 years prior. We sequenced amplicons of the 16S rRNA gene to provide insight into the microbial communities. We found that in the grazed control plots, microbial communities exhibited high evenness and displayed highly similar overall diversity. In plots where muskoxen had been excluded, microbial diversity was significantly reduced, and had more uneven intra-sample populations and overall lower ecological richness and evenness. We observed that the composition of microbial communities in grazed soils were significantly affected by the presence of muskoxen, as seen by elevated relative abundances of Bacteroides and Firmicutes, two major phyla found in muskox faeces. Furthermore, an increase in relative abundance of bacteria involved in degradation of recalcitrant carbohydrates and cycling of nitrogen was observed in grazed soil. Ungrazed soils displayed increased abundances of bacteria potentially involved in anaerobic oxidation of methane, whereas some methanogens were more abundant in grazed soils. This corroborates a previous finding that methane emissions are higher in arctic fens under muskox grazing. Our results show that the presence of large herbivores stimulates soil microbial diversity and has a homogenizing influence on the inter-species dynamics in soil microbial communities. The findings of this study, thus, improve our understanding of the effect of herbivore grazing on arctic ecosystems and the derived methane cycling.


Assuntos
Microbiota , Solo , Animais , Bactérias/metabolismo , Metano/metabolismo , RNA Ribossômico 16S/genética , Ruminantes , Solo/química , Microbiologia do Solo
11.
Ecol Evol ; 11(1): 338-351, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33437433

RESUMO

Animals have adapted behavioral and physiological strategies to conserve energy during periods of adverse conditions. Heterothermy is one such adaptation used by endotherms. While heterothermy-fluctuations in body temperature and metabolic rate-has been shown in large vertebrates, little is known of the costs and benefits of this strategy, both in terms of energy and in terms of fitness. Hence, our objective was to model the energetics of seasonal heterothermy in the largest Arctic ungulate, the muskox (Ovibos moschatus), using an individual-based energy budget model of metabolic physiology. We found that the empirically based drop in body temperature (winter max ~-0.8°C) overwinter in adult females resulted in substantial fitness benefits in terms of reduced daily energy expenditure and body mass loss. Body mass and energy reserves were 8.98% and 14.46% greater in modeled heterotherms compared to normotherms by end of winter. Based on environmental simulations, we show that seasonal heterothermy can, to some extent, buffer the negative consequences of poor prewinter body condition or reduced winter food accessibility, leading to greater winter survival (+20%-30%) and spring energy reserves (+10%-30%), and thus increased probability of future reproductive success. These results indicate substantial adaptive short-term benefits of seasonal heterothermy at the individual level, with potential implications for long-term population dynamics in highly seasonal environments.

12.
R Soc Open Sci ; 7(10): 201614, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33204486

RESUMO

The existence and persistence of rhythmicity in animal activity during phases of environmental change is of interest in ecology, evolution and chronobiology. A wide diversity of biological rhythms in response to exogenous conditions and internal stimuli have been uncovered, especially for polar vertebrates. However, empirical data supporting circadian organization in behaviour of large ruminating herbivores remains inconclusive. Using year-round tracking data of the largest Arctic ruminant, the muskox (Ovibos moschatus), we modelled rhythmicity as a function of behaviour and environmental conditions. Behavioural states were classified based on patterns in hourly movements, and incorporated within a periodicity analyses framework. Although circadian rhythmicity in muskox behaviour was detected throughout the year, ultradian rhythmicity was most prevalent, especially when muskoxen were foraging and resting in mid-winter (continuous darkness). However, when combining circadian and ultradian rhythmicity together, the probability of behavioural rhythmicity declined with increasing photoperiod until largely disrupted in mid-summer (continuous light). Individuals that remained behaviourally rhythmic during mid-summer foraged in areas with lower plant productivity (NDVI) than individuals with arrhythmic behaviour. Based on our study, we conclude that muskoxen may use an interval timer to schedule their behavioural cycles when forage resources are low, but that the importance and duration of this timer are reduced once environmental conditions allow energetic reserves to be replenished ad libitum. We argue that alimentary function and metabolic requirements are critical determinants of biological rhythmicity in muskoxen, which probably applies to ruminating herbivores in general.

13.
Mol Ecol ; 29(14): 2736-2746, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32562300

RESUMO

Understanding the role of interspecific interactions in shaping ecological communities is one of the central goals in community ecology. In fungal communities, measuring interspecific interactions directly is challenging because these communities are composed of large numbers of species, many of which are unculturable. An indirect way of assessing the role of interspecific interactions in determining community structure is to identify the species co-occurrences that are not constrained by environmental conditions. In this study, we investigated co-occurrences among root-associated fungi, asking whether fungi co-occur more or less strongly than expected based on the environmental conditions and the host plant species examined. We generated molecular data on root-associated fungi of five plant species evenly sampled along an elevational gradient at a high arctic site. We analysed the data using a joint species distribution modelling approach that allowed us to identify those co-occurrences that could be explained by the environmental conditions and the host plant species, as well as those co-occurrences that remained unexplained and thus more probably reflect interactive associations. Our results indicate that not only negative but also positive interactions play an important role in shaping microbial communities in arctic plant roots. In particular, we found that mycorrhizal fungi are especially prone to positively co-occur with other fungal species. Our results bring new understanding to the structure of arctic interaction networks by suggesting that interactions among root-associated fungi are predominantly positive.


Assuntos
Micobioma , Micorrizas , Raízes de Plantas/microbiologia , Regiões Árticas , DNA Fúngico/genética , Ecologia , Meio Ambiente , Micobioma/genética , Micorrizas/genética
14.
Front Zool ; 17: 6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32095154

RESUMO

BACKGROUND: Research of many mammal species tends to focus on single habitats, reducing knowledge of ecological flexibility. The Javan lutung (Trachypithecus auratus) is considered a strict forest primate, and little is known about populations living in savannah. In 2017-2018, we investigated the density and distribution of Javan lutung in Baluran National Park, Indonesia. We conducted ad libitum follows and line transect distance sampling with habitat suitability analysis of Javan lutung. RESULTS: Estimated density was 14.91 individuals km- 2 (95% CI 7.91-28.08), and estimated population size was 3727 individuals (95% CI 1979 - 7019). Long-tailed macaque (Macaca fascicularis) habitat suitability was the main driver of lutung habitat suitability as the probability of lutung occurrence increased greatly with macaque habitat suitability. Distance to roads, and distance to secondary forest had a negative relationship with lutung occurrence. Lutung habitat suitability decreased with increasing elevation, however, Mt Baluran and the primary forest on Mt Baluran was under-sampled due to treacherous conditions. Follows of six focus groups revealed considerable use of savannah, with terrestrial travel. The follows also revealed polyspecific associations with long-tailed macaques through shared sleeping sites and inter-specific vocalisations. CONCLUSIONS: Our study provides new knowledge on the general ecology of Javan lutung, such as use of savannah habitats, underlining our need to branch out in our study sites to understand the flexibility and adaptability of our study species. Another undocumented behaviour is the polyspecific association with long-tailed macaques. We encourage more research on this subject.

15.
Ambio ; 49(3): 833-847, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31955399

RESUMO

This review provides a synopsis of the main findings of individual papers in the special issue Terrestrial Biodiversity in a Rapidly Changing Arctic. The special issue was developed to inform the State of the Arctic Terrestrial Biodiversity Report developed by the Circumpolar Biodiversity Monitoring Program (CBMP) of the Conservation of Arctic Flora and Fauna (CAFF), Arctic Council working group. Salient points about the status and trends of Arctic biodiversity and biodiversity monitoring are organized by taxonomic groups: (1) vegetation, (2) invertebrates, (3) mammals, and (4) birds. This is followed by a discussion about commonalities across the collection of papers, for example, that heterogeneity was a predominant pattern of change particularly when assessing global trends for Arctic terrestrial biodiversity. Finally, the need for a comprehensive, integrated, ecosystem-based monitoring program, coupled with targeted research projects deciphering causal patterns, is discussed.


Assuntos
Biodiversidade , Ecossistema , Animais , Regiões Árticas , Aves , Invertebrados
16.
Mol Ecol Resour ; 20(1): 256-267, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31293086

RESUMO

The accurate quantification of eukaryotic species abundances from bulk samples remains a key challenge for community ecology and environmental biomonitoring. We resolve this challenge by combining shotgun sequencing, mapping to reference DNA barcodes or to mitogenomes, and three correction factors: (a) a percent-coverage threshold to filter out false positives, (b) an internal-standard DNA spike-in to correct for stochasticity during sequencing, and (c) technical replicates to correct for stochasticity across sequencing runs. The SPIKEPIPE pipeline achieves a strikingly high accuracy of intraspecific abundance estimates (in terms of DNA mass) from samples of known composition (mapping to barcodes R2  = .93, mitogenomes R2  = .95) and a high repeatability across environmental-sample replicates (barcodes R2  = .94, mitogenomes R2  = .93). As proof of concept, we sequence arthropod samples from the High Arctic, systematically collected over 17 years, detecting changes in species richness, species-specific abundances, and phenology. SPIKEPIPE provides cost-efficient and reliable quantification of eukaryotic communities.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Eucariotos/classificação , Eucariotos/genética , Metagenômica/métodos , Animais , Biodiversidade , DNA/genética , Metagenômica/instrumentação
17.
Ambio ; 49(3): 749-761, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31073984

RESUMO

Rock ptarmigan (Lagopus muta) and willow ptarmigan (L. lagopus) are Arctic birds with a circumpolar distribution but there is limited knowledge about their status and trends across their circumpolar distribution. Here, we compiled information from 90 ptarmigan study sites from 7 Arctic countries, where almost half of the sites are still monitored. Rock ptarmigan showed an overall negative trend on Iceland and Greenland, while Svalbard and Newfoundland had positive trends, and no significant trends in Alaska. For willow ptarmigan, there was a negative trend in mid-Sweden and eastern Russia, while northern Fennoscandia, North America and Newfoundland had no significant trends. Both species displayed some periods with population cycles (short 3-6 years and long 9-12 years), but cyclicity changed through time for both species. We propose that simple, cost-efficient systematic surveys that capture the main feature of ptarmigan population dynamics can form the basis for citizen science efforts in order to fill knowledge gaps for the many regions that lack systematic ptarmigan monitoring programs.


Assuntos
Galliformes , Alaska , Animais , Regiões Árticas , Groenlândia , América do Norte , Dinâmica Populacional , Federação Russa , Svalbard , Suécia
18.
Ambio ; 49(3): 805-819, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31187429

RESUMO

Muskoxen (Ovibos moschatus) are an integral component of Arctic biodiversity. Given low genetic diversity, their ability to respond to future and rapid Arctic change is unknown, although paleontological history demonstrates adaptability within limits. We discuss status and limitations of current monitoring, and summarize circumpolar status and recent variations, delineating all 55 endemic or translocated populations. Acknowledging uncertainties, global abundance is ca 170 000 muskoxen. Not all populations are thriving. Six populations are in decline, and as recently as the turn of the century, one of these was the largest population in the world, equaling ca 41% of today's total abundance. Climate, diseases, and anthropogenic changes are likely the principal drivers of muskox population change and result in multiple stressors that vary temporally and spatially. Impacts to muskoxen are precipitated by habitat loss/degradation, altered vegetation and species associations, pollution, and harvest. Which elements are relevant for a specific population will vary, as will their cumulative interactions. Our summaries highlight the importance of harmonizing existing data, intensifying long-term monitoring efforts including demographics and health assessments, standardizing and implementing monitoring protocols, and increasing stakeholder engagement/contributions.


Assuntos
Ecossistema , Ruminantes , Animais , Regiões Árticas , Biodiversidade , Incerteza
19.
PLoS Biol ; 17(10): e3000392, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31613872

RESUMO

2018: Arctic researchers have just witnessed another extreme summer-but in a new sense of the word. Although public interest has long been focused on general warming trends and trends towards a lower sea ice cover in the Arctic Ocean, this summer saw the realization of another predicted trend: that of increasing precipitation during the winter months and of increased year-to-year variability. In a well-studied ecosystem in Northeast Greenland, this resulted in the most complete reproductive failure encountered in the terrestrial ecosystem during more than two decades of monitoring: only a few animals and plants were able to reproduce because of abundant and late melting snow. These observations, we suggest, should open our eyes to potentially drastic consequences of predicted changes in both the mean and the variability of arctic climate.


Assuntos
Aves/fisiologia , Mudança Climática , Aptidão Genética , Mamíferos/fisiologia , Dormência de Plantas , Animais , Regiões Árticas , Ecossistema , Plantas , Chuva , Estações do Ano
20.
Int J Parasitol Parasites Wildl ; 10: 6-12, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31321206

RESUMO

Many rodents, including most populations of arctic lemmings (genus Dicrostonyx and Lemmus), have cyclic population dynamics. Among the numerous hypotheses which have been proposed and tested to explain this typical characteristic of some terrestrial vertebrate communities, trophic interactions have often been presented as the most likely drivers of these periodic fluctuations. The possible role of parasites has, however, only seldom been assessed. In this study, we genetically measured the prevalence of two endoparasite taxa, eimerians and cestodes, in 372 faecal samples from collared lemmings, over a five year period and across three distant sites in Northeast Greenland. Prevalence of cestodes was low (2.7% over all sites and years) and this taxon was only found at one site (although in 4 out of 5 years) in adult hosts. By contrast, we found high prevalence for eimerians (77.7% over all sites and years), which occurred at all sites, in every year, for both age classes (at the Hochstetter Forland site where both adult and juvenile faeces were collected) and regardless of reproductive and social status inferred from the characteristics of the lemming nests where the samples had been collected. Prevalence of eimerians significantly varied among years (not among sites) and was higher for juvenile than for adult lemmings at the Hochstetter Forland site. However, higher prevalence of eimerians (P t ) was only associated with lower lemming density (N t ) at one of the three sites and we found no delayed density dependence between N t and P t+1 to support the parasite hypothesis. Our results show that there is no clear relation between lemming density and eimerian faecal prevalence in Northeast Greenland and hence no evidence that eimerians could be driving the cyclic population dynamics of collared lemmings in this region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...