Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
Nat Commun ; 14(1): 4827, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563126

RESUMO

Three-dimensional (3D) electronic band structure is fundamental for understanding a vast diversity of physical phenomena in solid-state systems, including topological phases, interlayer interactions in van der Waals materials, dimensionality-driven phase transitions, etc. Interpretation of ARPES data in terms of 3D electron dispersions is commonly based on the free-electron approximation for the photoemission final states. Our soft-X-ray ARPES data on Ag metal reveals, however, that even at high excitation energies the final states can be a way more complex, incorporating several Bloch waves with different out-of-plane momenta. Such multiband final states manifest themselves as a complex structure and added broadening of the spectral peaks from 3D electron states. We analyse the origins of this phenomenon, and trace it to other materials such as Si and GaN. Our findings are essential for accurate determination of the 3D band structure over a wide range of materials and excitation energies in the ARPES experiment.

2.
NPJ Quantum Mater ; 8(1): 7, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38666240

RESUMO

In high-temperature cuprate superconductors, stripe order refers broadly to a coupled spin and charge modulation with a commensuration of eight and four lattice units, respectively. How this stripe order evolves across optimal doping remains a controversial question. Here we present a systematic resonant inelastic x-ray scattering study of weak charge correlations in La2-xSrxCuO4 and La1.8-xEu0.2SrxCuO4. Ultra high energy resolution experiments demonstrate the importance of the separation of inelastic and elastic scattering processes. Long-range temperature-dependent stripe order is only found below optimal doping. At higher doping, short-range temperature-independent correlations are present up to the highest doping measured. This transformation is distinct from and preempts the pseudogap critical doping. We argue that the doping and temperature-independent short-range correlations originate from unresolved electron-phonon coupling that broadly peaks at the stripe ordering vector. In La2-xSrxCuO4, long-range static stripe order vanishes around optimal doping and we discuss both quantum critical and crossover scenarios.

3.
Sci Rep ; 12(1): 18948, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347969

RESUMO

For many patients with hematological malignancies such as acute leukemia or myelodysplastic syndrome allogeneic hematopoietic stem cell transplantation (allogeneic HSCT) is the only curative treatment option. Despite the curative potential of this treatment many patients experience relapse of their underlying disease or die due to multiple complications e.g. infections. Risk scores could help to assess the individual prognosis and guide patients and treating physicians to choose between different treatment options. Parameters reflecting the inflammatory status, such as neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), and platelet-to-lymphocyte ratio (PLR), have been demonstrated to be associated with prognosis and treatment complications in patients with various cancers. In this study, we evaluate pre-HSCT NLR, MLR and PLR as predictive markers in patients undergoing allogeneic HSCT. We demonstrate that a high (> 133) PLR level is associated with better clinical outcome. Patients with high pre-HSCT PLR show a significant better overall survival (p = 0.001), less relapses (p = 0.016), lower non-relapse-mortality (p = 0.022), less transfusions of red blood cells, platelets and fresh frozen plasma (p = 0.000), fewer episodes of fever (p = 0.002), considerably less different antibiotics (p = 0.005), fewer intensive care unit treatment (p = 0.017) and a lower in-hospital mortality (p = 0.024). Pre-HSCT PLR is easy to calculate by daily routine and could help to predict patient outcome after allogeneic HSCT.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Linfócitos , Humanos , Estudos Retrospectivos , Linfócitos/patologia , Plaquetas/patologia , Neutrófilos/patologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Prognóstico
4.
J Exp Biol ; 225(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35502794

RESUMO

Physio-logging methods, which use animal-borne devices to record physiological variables, are entering a new era driven by advances in sensor development. However, existing datasets collected with traditional bio-loggers, such as accelerometers, still contain untapped eco-physiological information. Here, we present a computational method for extracting heart rate from high-resolution accelerometer data using a ballistocardiogram. We validated our method with simultaneous accelerometer-electrocardiogram tag deployments in a controlled setting on a killer whale (Orcinus orca) and demonstrate the predictions correspond with previously observed cardiovascular patterns in a blue whale (Balaenoptera musculus), including the magnitude of apneic bradycardia and increase in heart rate prior to and during ascent. Our ballistocardiogram method may be applied to mine heart rates from previously collected accelerometery data and expand our understanding of comparative cardiovascular physiology.


Assuntos
Balaenoptera , Caniformia , Orca , Acelerometria , Animais , Balaenoptera/fisiologia , Frequência Cardíaca
5.
Nat Commun ; 13(1): 1795, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379813

RESUMO

Static stripe order is detrimental to superconductivity. Yet, it has been proposed that transverse stripe fluctuations may enhance the inter-stripe Josephson coupling and thus promote superconductivity. Direct experimental studies of stripe dynamics, however, remain difficult. From a strong-coupling perspective, transverse stripe fluctuations are realized in the form of dynamic "kinks"-sideways shifting stripe sections. Here, we show how modest uniaxial pressure tuning reorganizes directional kink alignment. Our starting point is La1.88Sr0.12CuO4 where transverse kink ordering results in a rotation of stripe order away from the crystal axis. Application of mild uniaxial pressure changes the ordering pattern and pins the stripe order to the crystal axis. This reordering occurs at a much weaker pressure than that to detwin the stripe domains and suggests a rather weak transverse stripe stiffness. Weak spatial stiffness and transverse quantum fluctuations are likely key prerequisites for stripes to coexist with superconductivity.

6.
Br J Dermatol ; 185(3): 595-604, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33792909

RESUMO

BACKGROUND: Pemphigus is a severe bullous autoimmune skin disease. Pemphigus foliaceus (PF) is characterized by antidesmoglein (Dsg) 1 IgG causing epidermal blistering; mucosal pemphigus vulgaris (mPV) by anti-Dsg3 IgG inducing erosions in the mucosa; and mucocutaneous pemphigus vulgaris (PV) by affecting both, with autoantibodies targeting Dsg1 and Dsg3. OBJECTIVES: To characterize the Ca2+ flux pathway and delineate its importance in pemphigus pathogenesis and clinical phenotypes caused by different antibody profiles. METHODS: Immunoprecipitation, Ca2+ flux analysis, Western blotting, immunofluorescence staining, dissociation assays and a human skin ex vivo model were used. RESULTS: PV IgG and PF IgG, but neither Dsg3-specific monoclonal antibody (AK23) nor mPV IgG, caused Ca2+ influx in primary human keratinocytes. Phosphatidylinositol 4-kinase α interacts with Dsg1 but not with Dsg3. Its downstream target - phospholipase-C-γ1 (PLC) - was activated by PV IgG and PF IgG but not AK23 or mPV IgG. PLC releases inositol 1,4,5-trisphosphate (IP3) causing IP3 receptor (IP3R) activation and Ca2+ flux from the endoplasmic reticulum into the cytosol, which stimulates Ca2+ release-activated channels (CRAC)-mediated Ca2+ influx. Inhibitors against PLC, IP3R and CRAC effectively blocked PV IgG and PF IgG-induced Ca2+ influx; ameliorated alterations of Dsg1 and Dsg3 localization, and reorganization of keratin and actin filaments; and inhibited loss of cell adhesion in vitro. Finally, inhibiting PLC or IP3R was protective against PV IgG-induced blister formation and redistribution of Dsg1 and Dsg3 in human skin ex vivo. CONCLUSIONS: Ca2+ -mediated signalling is important for epidermal blistering and dependent on the autoantibody profile, which indicates different roles for signalling complexes organized by Dsg1 and Dsg3. Interfering with PLC and Ca2+ signalling may be a promising approach to treat epidermal manifestations of pemphigus.


Assuntos
Pênfigo , Autoanticorpos , Vesícula , Desmogleína 1 , Desmogleína 3 , Epiderme , Humanos , Imunoglobulina G
8.
Phys Rev Lett ; 124(18): 187002, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32441965

RESUMO

We use resonant inelastic x-ray scattering to investigate charge-stripe correlations in La_{1.675}Eu_{0.2}Sr_{0.125}CuO_{4}. By differentiating elastic from inelastic scattering, it is demonstrated that charge-stripe correlations precede both the structural low-temperature tetragonal phase and the transport-defined pseudogap onset. The scattering peak amplitude from charge stripes decays approximately as T^{-2} towards our detection limit. The in-plane integrated intensity, however, remains roughly temperature independent. Therefore, although the incommensurability shows a remarkably large increase at high temperature, our results are interpreted via a single scattering constituent. In fact, direct comparison to other stripe-ordered compounds (La_{1.875}Ba_{0.125}CuO_{4}, La_{1.475}Nd_{0.4}Sr_{0.125}CuO_{4}, and La_{1.875}Sr_{0.125}CuO_{4}) suggests a roughly constant integrated scattering intensity across all these compounds. Our results therefore provide a unifying picture for the charge-stripe ordering in La-based cuprates. As charge correlations in La_{1.675}Eu_{0.2}Sr_{0.125}CuO_{4} extend beyond the low-temperature tetragonal and pseudogap phase, their emergence heralds a spontaneous symmetry breaking in this compound.

9.
Ann Chir Plast Esthet ; 65(4): 294-299, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32417106

RESUMO

BACKGROUND: Ambulatory or outpatient surgery is defined as surgery that does not require an overnight hospital stay. It offers patients both convenience and reduced costs. With the increased use of bariatric surgery, Extended L-shaped Lipo-brachioplasty is now frequently requested as a follow-up procedure. Although numerous studies have focused on its technique and outcomes, none have evaluated its acceptability as an outpatient procedure. This was the aim of this prospective study. PATIENTS AND METHODS: This study was performed between January 2016 and September 2019. All patients undergoing extended L-shaped Lipo-brachioplasty during that period were included and divided into two groups, according to the type of hospitalization. For both groups, we recorded the demographics, medical and surgical data, as well as any postoperative complications. In the outpatient group, we also recorded discharge failures at day 0. RESULTS: 75 patients were included in the study (40 outpatients, 35 hospitalizations). There were no significant differences between the two groups in terms of demographics, surgical data, or the incidence of complications. In the outpatient group, three patients could not be discharged the evening of the procedure and had to stay overnight. No readmissions or major complications were reported in this group. CONCLUSION: Our prospective study shows that outpatient Extended L-shaped Lipo-brachioplasty safely provides the same outcomes as those performed during traditional hospitalization. We believe that for eligible patients, it should routinely be performed as an outpatient procedure.


Assuntos
Procedimentos Cirúrgicos Ambulatórios , Pacientes Ambulatoriais , Hospitalização , Humanos , Tempo de Internação , Complicações Pós-Operatórias/epidemiologia , Estudos Prospectivos , Estudos Retrospectivos
10.
Sci Rep ; 10(1): 4717, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170108

RESUMO

High entropy alloys (HEA) are an unusual class of materials where mixtures of elements are stochastically arrayed on a simple crystalline lattice. These systems exhibit remarkable functionality, often along several distinct axes: e.g., the examples [TaNb]1-x(TiZrHf)x are high strength and damage resistant refractory metals that also exhibit superconductivity with large upper critical fields. Here we report the discovery of an f-electron containing HEA, [TaNb]0.31(TiUHf)0.69, which is the first to include an actinide ion. Similar to the Zr-analogue, this material crystallizes in a body-centered cubic lattice with the lattice constant a = 3.41(1) Å and exhibits phonon mediated superconductivity with a transition temperatures Tc ≈ 3.2 K and upper critical fields Hc2 ≈ 6.4 T. These results expand this class of materials to include actinide elements, shows that superconductivity is robust in this sub-group, and opens the path towards leveraging HEAs as functional waste forms for a variety of radioisotopes.

11.
Nat Mater ; 19(4): 381-385, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31959951

RESUMO

The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors1-10. The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO2 (refs. 11,12) has strengthened these efforts. Here, we use X-ray spectroscopy and density functional theory to show that the electronic structure of LaNiO2 and NdNiO2, while similar to the cuprates, includes significant distinctions. Unlike cuprates, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly interacting three-dimensional 5d metallic state, which hybridizes with a quasi-two-dimensional, strongly correlated state with [Formula: see text] symmetry in the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare-earth intermetallics13-15, which are well known for heavy fermion behaviour, where the NiO2 correlated layers play an analogous role to the 4f states in rare-earth heavy fermion compounds. This Kondo- or Anderson-lattice-like 'oxide-intermetallic' replaces the Mott insulator as the reference state from which superconductivity emerges upon doping.

12.
Dalton Trans ; 49(5): 1570-1581, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31934703

RESUMO

The interaction of Np(v) with borate was investigated in 0.1-5.0 M NaCl and 0.25-4.5 M MgCl2 solutions with 7.2 ≤ pHm ≤ 10.0 (pHm = -log[H+]) and 0.004 M ≤ [B]tot ≤ 0.16 M. Experiments were performed under an Ar-atmosphere at T = (22 ± 2) °C using a combination of under- and oversaturation solubility experiments, NIR spectroscopy, and extensive solid phase characterization. A bathochromic shift (≈5 nm) in the Np(v) band at λ = 980 nm indicates the formation of weak Np(v)-borate complexes under mildly alkaline pHm-conditions. The identification of an isosbestic point supports the formation of a single Np(v)-borate species in dilute MgCl2 systems, whereas a more complex aqueous speciation (eventually involving the formation of several Np(v)-borate species) is observed in concentrated MgCl2 solutions. The solubility of freshly prepared NpO2OH(am) remained largely unaltered in NaCl and MgCl2 solutions with [B]tot = 0.04 M within the timeframe of this study (t ≤ 300 days). At [B]tot = 0.16 M, a kinetically hindered but very significant drop in the solubility of Np(v) (3-4 log10-units, compared to borate-free systems) was observed in NaCl and dilute MgCl2 solutions with pHm ≤ 9. The drop in the solubility was accompanied by a clear change in the colour of the solid phase (from green to white-greyish). XRD and TEM analyses showed that the amorphous NpO2OH(am) "starting material" transformed into crystalline solid phases with similar XRD patterns in NaCl and MgCl2 systems. XPS, SEM-EDS and EXAFS further indicated that borate and Na/Mg participate stoichiometrically in the formation of such solid phases. Additional undersaturation solubility experiments using the newly formed Na-Np(v)-borate(cr) and Mg-Np(v)-borate(cr) compounds further confirmed the low solubility ([Np(v)]aq ≈ 10-6-10-7 M) of such solid phases in mildly alkaline pHm-conditions. The formation of these solid phases represents a previously unreported retention mechanism for the highly mobile Np(v) under boundary conditions (pHm, [B]tot, ionic strength) of relevance to certain repository concepts for nuclear waste disposal.

13.
Nat Commun ; 10(1): 786, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783084

RESUMO

The transition temperature Tc of unconventional superconductivity is often tunable. For a monolayer of FeSe, for example, the sweet spot is uniquely bound to titanium-oxide substrates. By contrast for La2-xSrxCuO4 thin films, such substrates are sub-optimal and the highest Tc is instead obtained using LaSrAlO4. An outstanding challenge is thus to understand the optimal conditions for superconductivity in thin films: which microscopic parameters drive the change in Tc and how can we tune them? Here we demonstrate, by a combination of x-ray absorption and resonant inelastic x-ray scattering spectroscopy, how the Coulomb and magnetic-exchange interaction of La2CuO4 thin films can be enhanced by compressive strain. Our experiments and theoretical calculations establish that the substrate producing the largest Tc under doping also generates the largest nearest neighbour hopping integral, Coulomb and magnetic-exchange interaction. We hence suggest optimising the parent Mott state as a strategy for enhancing the superconducting transition temperature in cuprates.

14.
J Phys Condens Matter ; 31(16): 165601, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30645978

RESUMO

We report on synthesis and characterization of the compounds A 6W4Al43 (A = U and Pu), that form in the hexagonal Ho6Mo4Al43 caged-structure family. The A ions reside within W/Al cages where the A-A nearest neighbors form dimers between adjacent W/Al cages, with U-U and Pu-Pu distances of 3.3892 [Formula: see text] and 3.4080 [Formula: see text], respectively. While the W/Al networks provide environments similar to those of other cage-like materials (e.g. filled skutterudites), the atomic displacement parameters from single crystal x-ray diffraction measurements show that the A-ions do not exhibit rattling behavior. We find that there is site interchange disorder on one of the W/Al sites. Magnetic susceptibility measurements show that U6W4Al43 displays anisotropic Curie-Weiss behavior where it fits to the data yield an effective magnetic moment near 2.0 [Formula: see text]/U. At low temperatures the magnetic susceptibility deviates from the Curie-Weiss temperature dependence and eventually saturates to a constant value. In contrast, Pu6W4Al43 displays nearly temperature independent Pauli paramagnetism for all temperatures, as would be expected if the 5f -electrons are delocalized. The electrical resistivity for U6W4Al43 increases slightly with the decreasing temperature, suggesting that it is dominated by f -electronic hybridization effects and disorder scattering that originates from the W/Al site interchange. Specific heat measurements for U6W4Al43 further reveal an enhanced electronic Sommerfeld coefficient that is consistent with a moderately enhanced charge carrier effective mass. Together these measurements expose these materials as hosts for unstable f -electron magnetism, where the novel cage-like structures control the phenomena through the spacing between the A ions. Through this combination of mild magnetism, the low cost elements of the Al-W cages, and chemical tunability that has been shown for related materials in the same structure, the A 6W4Al43 compounds emerge as promising nuclear waste-forms for transuranics, while the wider family of materials makes an appealing environment for studying f -electron physics in a novel structure.

15.
Nat Commun ; 9(1): 5394, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30568161

RESUMO

One-dimensional (1D) magnetic insulators have attracted significant interest as a platform for studying quasiparticle fractionalization, quantum criticality, and emergent phenomena. The spin-1/2 Heisenberg chain with antiferromagnetic nearest neighbour interactions is an important reference system; its elementary magnetic excitations are spin-1/2 quasiparticles called spinons that are created in even numbers. However, while the excitation continuum associated with two-spinon states is routinely observed, the study of four-spinon and higher multi-spinon states is an open area of research. Here we show that four-spinon excitations can be accessed directly in Sr2CuO3 using resonant inelastic x-ray scattering (RIXS) in a region of phase space clearly separated from the two-spinon continuum. Our finding is made possible by the fundamental differences in the correlation function probed by RIXS in comparison to other probes. This advance holds promise as a tool in the search for novel quantum states and quantum spin liquids.

16.
Phys Rev Lett ; 121(7): 077004, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30169083

RESUMO

We present a soft x-ray angle-resolved photoemission spectroscopy study of overdoped high-temperature superconductors. In-plane and out-of-plane components of the Fermi surface are mapped by varying the photoemission angle and the incident photon energy. No k_{z} dispersion is observed along the nodal direction, whereas a significant antinodal k_{z} dispersion is identified for La-based cuprates. Based on a tight-binding parametrization, we discuss the implications for the density of states near the van Hove singularity. Our results suggest that the large electronic specific heat found in overdoped La_{2-x}Sr_{x}CuO_{4} cannot be assigned to the van Hove singularity alone. We therefore propose quantum criticality induced by a collapsing pseudogap phase as a plausible explanation for observed enhancement of electronic specific heat.

17.
Nat Commun ; 9(1): 2653, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29992961

RESUMO

Nanostructures based on buried interfaces and heterostructures are at the heart of modern semiconductor electronics as well as future devices utilizing spintronics, multiferroics, topological effects, and other novel operational principles. Knowledge of electronic structure of these systems resolved in electron momentum k delivers unprecedented insights into their physics. Here we explore 2D electron gas formed in GaN/AlGaN high-electron-mobility transistor heterostructures with an ultrathin barrier layer, key elements in current high-frequency and high-power electronics. Its electronic structure is accessed with angle-resolved photoelectron spectroscopy whose probing depth is pushed to a few nanometers using soft-X-ray synchrotron radiation. The experiment yields direct k-space images of the electronic structure fundamentals of this system-the Fermi surface, band dispersions and occupancy, and the Fourier composition of wavefunctions encoded in the k-dependent photoemission intensity. We discover significant planar anisotropy of the electron Fermi surface and effective mass connected with relaxation of the interfacial atomic positions, which translates into nonlinear (high-field) transport properties of the GaN/AlGaN heterostructures as an anisotropy of the saturation drift velocity of the 2D electrons.

18.
Nat Commun ; 9(1): 972, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29511188

RESUMO

The minimal ingredients to explain the essential physics of layered copper-oxide (cuprates) materials remains heavily debated. Effective low-energy single-band models of the copper-oxygen orbitals are widely used because there exists no strong experimental evidence supporting multi-band structures. Here, we report angle-resolved photoelectron spectroscopy experiments on La-based cuprates that provide direct observation of a two-band structure. This electronic structure, qualitatively consistent with density functional theory, is parametrised by a two-orbital ([Formula: see text] and [Formula: see text]) tight-binding model. We quantify the orbital hybridisation which provides an explanation for the Fermi surface topology and the proximity of the van-Hove singularity to the Fermi level. Our analysis leads to a unification of electronic hopping parameters for single-layer cuprates and we conclude that hybridisation, restraining d-wave pairing, is an important optimisation element for superconductivity.

19.
Phys Rev Lett ; 119(9): 097001, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28949586

RESUMO

Spin excitations in the overdoped high temperature superconductors Tl_{2}Ba_{2}CuO_{6+δ} and (Bi,Pb)_{2}(Sr,La)_{2}CuO_{6+δ} were investigated by resonant inelastic x-ray scattering (RIXS) as functions of doping and detuning of the incoming photon energy above the Cu-L_{3} absorption peak. The RIXS spectra at optimal doping are dominated by a paramagnon feature with peak energy independent of photon energy, similar to prior results on underdoped cuprates. Beyond optimal doping, the RIXS data indicate a sharp crossover to a regime with a strong contribution from incoherent particle-hole excitations whose maximum shows a fluorescencelike shift upon detuning. The spectra of both compound families are closely similar, and their salient features are reproduced by exact-diagonalization calculations of the single-band Hubbard model on a finite cluster. The results are discussed in the light of recent transport experiments indicating a quantum phase transition near optimal doping.

20.
Water Sci Technol ; 76(5-6): 1225-1233, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28876264

RESUMO

In the future, an additional potential of control reserve as well as storage capacities will be required to compensate fluctuating renewable energy availability. The operation of energy systems will change and flexibility in energy generation and consumption will rise to a valuable asset. Wastewater treatment plants (WWTPs) are capable of providing the flexibility needed, not only with their energy generators but also in terms of their energy consuming aggregates on the plant. To meet challenges of the future in regard to energy purchase and to participate in and contribute to such a volatile energy market, WWTPs have to reveal their energetic potential as a flexible service provider. Based on the evaluated literature and a detailed analysis of aggregates on a pilot WWTP an aggregate management has been developed to shift loads and provide a procedure to identify usable aggregates, characteristic values and control parameters to ensure effluent quality. The results show that WWTPs have a significant potential to provide energetic flexibility. Even for vulnerable components such as aeration systems, load-shifting is possible with appropriate control parameters and reasonable time slots without endangering system functionality.


Assuntos
Instalações de Eliminação de Resíduos , Águas Residuárias , Conservação de Recursos Energéticos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...