Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 617(7962): 842-850, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37165190

RESUMO

Pre-mRNA splicing follows a pathway driven by ATP-dependent RNA helicases. A crucial event of the splicing pathway is the catalytic activation, which takes place at the transition between the activated Bact and the branching-competent B* spliceosomes. Catalytic activation occurs through an ATP-dependent remodelling mediated by the helicase PRP2 (also known as DHX16)1-3. However, because PRP2 is observed only at the periphery of spliceosomes3-5, its function has remained elusive. Here we show that catalytic activation occurs in two ATP-dependent stages driven by two helicases: PRP2 and Aquarius. The role of Aquarius in splicing has been enigmatic6,7. Here the inactivation of Aquarius leads to the stalling of a spliceosome intermediate-the BAQR complex-found halfway through the catalytic activation process. The cryogenic electron microscopy structure of BAQR reveals how PRP2 and Aquarius remodel Bact and BAQR, respectively. Notably, PRP2 translocates along the intron while it strips away the RES complex, opens the SF3B1 clamp and unfastens the branch helix. Translocation terminates six nucleotides downstream of the branch site through an assembly of PPIL4, SKIP and the amino-terminal domain of PRP2. Finally, Aquarius enables the dissociation of PRP2, plus the SF3A and SF3B complexes, which promotes the relocation of the branch duplex for catalysis. This work elucidates catalytic activation in human splicing, reveals how a DEAH helicase operates and provides a paradigm for how helicases can coordinate their activities.


Assuntos
Biocatálise , Splicing de RNA , Humanos , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Ciclofilinas/metabolismo , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Spliceossomos/metabolismo
2.
Sci Adv ; 8(28): eabm9875, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857496

RESUMO

RNA polymerase III (RNAPIII) synthesizes essential and abundant noncoding RNAs such as transfer RNAs. Controlling RNAPIII span of activity by accurate and efficient termination is a challenging necessity to ensure robust gene expression and to prevent conflicts with other DNA-associated machineries. The mechanism of RNAPIII termination is believed to be simpler than that of other eukaryotic RNA polymerases, solely relying on the recognition of a T-tract in the nontemplate strand. Here, we combine high-resolution genome-wide analyses and in vitro transcription termination assays to revisit the mechanism of RNAPIII transcription termination in budding yeast. We show that T-tracts are necessary but not always sufficient for termination and that secondary structures of the nascent RNAs are important auxiliary cis-acting elements. Moreover, we show that the helicase Sen1 plays a key role in a fail-safe termination pathway. Our results provide a comprehensive model illustrating how multiple mechanisms cooperate to ensure efficient RNAPIII transcription termination.


Assuntos
RNA Polimerase III , Proteínas de Saccharomyces cerevisiae , DNA Helicases/metabolismo , Estudo de Associação Genômica Ampla , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
3.
Commun Biol ; 4(1): 999, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429502

RESUMO

The coronavirus SARS-CoV-2 uses an RNA-dependent RNA polymerase (RdRp) to replicate and transcribe its genome. Previous structures of the RdRp revealed a monomeric enzyme composed of the catalytic subunit nsp12, two copies of subunit nsp8, and one copy of subunit nsp7. Here we report an alternative, dimeric form of the enzyme and resolve its structure at 5.5 Å resolution. In this structure, the two RdRps contain only one copy of nsp8 each and dimerize via their nsp7 subunits to adopt an antiparallel arrangement. We speculate that the RdRp dimer facilitates template switching during production of sub-genomic RNAs.


Assuntos
SARS-CoV-2/enzimologia , Dimerização , Humanos , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo
4.
Nat Struct Mol Biol ; 28(9): 740-746, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34381216

RESUMO

Molnupiravir is an orally available antiviral drug candidate currently in phase III trials for the treatment of patients with COVID-19. Molnupiravir increases the frequency of viral RNA mutations and impairs SARS-CoV-2 replication in animal models and in humans. Here, we establish the molecular mechanisms underlying molnupiravir-induced RNA mutagenesis by the viral RNA-dependent RNA polymerase (RdRp). Biochemical assays show that the RdRp uses the active form of molnupiravir, ß-D-N4-hydroxycytidine (NHC) triphosphate, as a substrate instead of cytidine triphosphate or uridine triphosphate. When the RdRp uses the resulting RNA as a template, NHC directs incorporation of either G or A, leading to mutated RNA products. Structural analysis of RdRp-RNA complexes that contain mutagenesis products shows that NHC can form stable base pairs with either G or A in the RdRp active center, explaining how the polymerase escapes proofreading and synthesizes mutated RNA. This two-step mutagenesis mechanism probably applies to various viral polymerases and can explain the broad-spectrum antiviral activity of molnupiravir.


Assuntos
COVID-19/prevenção & controle , Citidina/análogos & derivados , Hidroxilaminas/metabolismo , Mutagênese/genética , RNA Viral/genética , SARS-CoV-2/genética , Animais , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Sequência de Bases , COVID-19/virologia , Citidina/química , Citidina/metabolismo , Citidina/farmacologia , Humanos , Hidroxilaminas/química , Hidroxilaminas/farmacologia , Modelos Moleculares , Estrutura Molecular , Mutagênese/efeitos dos fármacos , Mutação/efeitos dos fármacos , Mutação/genética , Conformação de Ácido Nucleico , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , RNA Viral/química , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Tratamento Farmacológico da COVID-19
5.
Mol Cell ; 81(9): 1920-1934.e9, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33689748

RESUMO

Transcription by RNA polymerase II (Pol II) is coupled to pre-mRNA splicing, but the underlying mechanisms remain poorly understood. Co-transcriptional splicing requires assembly of a functional spliceosome on nascent pre-mRNA, but whether and how this influences Pol II transcription remains unclear. Here we show that inhibition of pre-mRNA branch site recognition by the spliceosome component U2 snRNP leads to a widespread and strong decrease in new RNA synthesis from human genes. Multiomics analysis reveals that inhibition of U2 snRNP function increases the duration of Pol II pausing in the promoter-proximal region, impairs recruitment of the pause release factor P-TEFb, and reduces Pol II elongation velocity at the beginning of genes. Our results indicate that efficient release of paused Pol II into active transcription elongation requires the formation of functional spliceosomes and that eukaryotic mRNA biogenesis relies on positive feedback from the splicing machinery to the transcription machinery.


Assuntos
RNA Polimerase II/metabolismo , RNA Mensageiro/biossíntese , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Spliceossomos/enzimologia , Elongação da Transcrição Genética , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Células HeLa , Humanos , Células K562 , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/genética , Ribonucleoproteína Nuclear Pequena U2/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/genética , Fatores de Tempo
6.
Nat Commun ; 12(1): 279, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436624

RESUMO

Remdesivir is the only FDA-approved drug for the treatment of COVID-19 patients. The active form of remdesivir acts as a nucleoside analog and inhibits the RNA-dependent RNA polymerase (RdRp) of coronaviruses including SARS-CoV-2. Remdesivir is incorporated by the RdRp into the growing RNA product and allows for addition of three more nucleotides before RNA synthesis stalls. Here we use synthetic RNA chemistry, biochemistry and cryo-electron microscopy to establish the molecular mechanism of remdesivir-induced RdRp stalling. We show that addition of the fourth nucleotide following remdesivir incorporation into the RNA product is impaired by a barrier to further RNA translocation. This translocation barrier causes retention of the RNA 3'-nucleotide in the substrate-binding site of the RdRp and interferes with entry of the next nucleoside triphosphate, thereby stalling RdRp. In the structure of the remdesivir-stalled state, the 3'-nucleotide of the RNA product is matched and located with the template base in the active center, and this may impair proofreading by the viral 3'-exonuclease. These mechanistic insights should facilitate the quest for improved antivirals that target coronavirus replication.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , RNA Polimerase Dependente de RNA/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Aptâmeros de Nucleotídeos , RNA-Polimerase RNA-Dependente de Coronavírus/efeitos dos fármacos , Nucleotídeos , RNA Viral , RNA Polimerase Dependente de RNA/genética , SARS-CoV-2/enzimologia , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
7.
Mol Cell ; 69(6): 979-992.e6, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29547724

RESUMO

Human nineteen complex (NTC) acts as a multimeric E3 ubiquitin ligase in DNA repair and splicing. The transfer of ubiquitin is mediated by Prp19-a homotetrameric component of NTC whose elongated coiled coils serve as an assembly axis for two other proteins called SPF27 and CDC5L. We find that Prp19 is inactive on its own and have elucidated the structural basis of its autoinhibition by crystallography and mutational analysis. Formation of the NTC core by stepwise assembly of SPF27, CDC5L, and PLRG1 onto the Prp19 tetramer enables ubiquitin ligation. Protein-protein crosslinking of NTC, functional assays in vitro, and assessment of its role in DNA damage response provide mechanistic insight into the organization of the NTC core and the communication between PLRG1 and Prp19 that enables E3 activity. This reveals a unique mode of regulation for a complex E3 ligase and advances understanding of its dynamics in various cellular pathways.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Processamento de RNA/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Cristalização , Dano ao DNA , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/genética , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Moleculares , Mutação , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Conformação Proteica , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteína de Replicação A/metabolismo , Células Sf9 , Spodoptera , Relação Estrutura-Atividade , Ubiquitinação , Repetições WD40
8.
Mol Cell ; 64(2): 307-319, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27720643

RESUMO

SF3b is a heptameric protein complex of the U2 small nuclear ribonucleoprotein (snRNP) that is essential for pre-mRNA splicing. Mutations in the largest SF3b subunit, SF3B1/SF3b155, are linked to cancer and lead to alternative branch site (BS) selection. Here we report the crystal structure of a human SF3b core complex, revealing how the distinctive conformation of SF3b155's HEAT domain is maintained by multiple contacts with SF3b130, SF3b10, and SF3b14b. Protein-protein crosslinking enabled the localization of the BS-binding proteins p14 and U2AF65 within SF3b155's HEAT-repeat superhelix, which together with SF3b14b forms a composite RNA-binding platform. SF3b155 residues, the mutation of which leads to cancer, contribute to the tertiary structure of the HEAT superhelix and its surface properties in the proximity of p14 and U2AF65. The molecular architecture of SF3b reveals the spatial organization of cancer-related SF3b155 mutations and advances our understanding of their effects on SF3b structure and function.


Assuntos
Mutação , Proteínas de Neoplasias/química , Proteínas Oncogênicas/química , Fosfoproteínas/química , Fatores de Processamento de RNA/química , Spliceossomos/química , Fator de Processamento U2AF/química , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Expressão Gênica , Genes Supressores de Tumor , Células HeLa , Humanos , Modelos Moleculares , Mariposas , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Splicing de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Spliceossomos/metabolismo , Spliceossomos/ultraestrutura , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo
9.
Wiley Interdiscip Rev RNA ; 7(2): 259-74, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26874649

RESUMO

Splicing is an essential step of gene expression. It occurs in two consecutive chemical reactions catalyzed by a large protein-RNA complex named the spliceosome. Assembled on the pre-mRNA substrate from five small nuclear proteins, the spliceosome acts as a protein-controlled ribozyme to catalyze the two reactions and finally dissociates into its components, which are re-used for a new round of splicing. Upon following this cyclic pathway, the spliceosome undergoes numerous intermediate stages that differ in composition as well as in their internal RNA-RNA and RNA-protein contacts. The driving forces and control mechanisms of these remodeling processes are provided by specific molecular motors called RNA helicases. While eight spliceosomal helicases are present in all organisms, higher eukaryotes contain five additional ones potentially required to drive a more intricate splicing pathway and link it to an RNA metabolism of increasing complexity. Spliceosomal helicases exhibit a notable structural diversity in their accessory domains and overall architecture, in accordance with the diversity of their task-specific functions. This review summarizes structure-function knowledge about all spliceosomal helicases, including the latter five, which traditionally are treated separately from the conserved ones. The implications of the structural characteristics of helicases for their functions, as well as for their structural communication within the multi-subunits environment of the spliceosome, are pointed out.


Assuntos
RNA Helicases/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , Animais , RNA Helicases DEAD-box/metabolismo , Humanos , Ligação Proteica , RNA Helicases/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Spliceossomos/metabolismo , Especificidade por Substrato
10.
PLoS Genet ; 11(9): e1005539, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26393790

RESUMO

Little is known about contacts in the spliceosome between proteins and intron nucleotides surrounding the pre-mRNA branch-site and their dynamics during splicing. We investigated protein-pre-mRNA interactions by UV-induced crosslinking of purified yeast B(act) spliceosomes formed on site-specifically labeled pre-mRNA, and analyzed their changes after conversion to catalytically-activated B* and step 1 C complexes, using a purified splicing system. Contacts between nucleotides upstream and downstream of the branch-site and the U2 SF3a/b proteins Prp9, Prp11, Hsh49, Cus1 and Hsh155 were detected, demonstrating that these interactions are evolutionarily conserved. The RES proteins Pml1 and Bud13 were shown to contact the intron downstream of the branch-site. A comparison of the B(act) crosslinking pattern versus that of B* and C complexes revealed that U2 and RES protein interactions with the intron are dynamic. Upon step 1 catalysis, Cwc25 contacts with the branch-site region, and enhanced crosslinks of Prp8 and Prp45 with nucleotides surrounding the branch-site were observed. Cwc25's step 1 promoting activity was not dependent on its interaction with pre-mRNA, indicating it acts via protein-protein interactions. These studies provide important insights into the spliceosome's protein-pre-mRNA network and reveal novel RNP remodeling events during the catalytic activation of the spliceosome and step 1 of splicing.


Assuntos
Proteínas de Transporte/genética , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Proteínas de Saccharomyces cerevisiae/genética , Spliceossomos/genética , Catálise , Íntrons/genética , Nucleotídeos/genética , Precursores de RNA/genética , Sítios de Splice de RNA/genética , Splicing de RNA/genética , Fatores de Processamento de RNA , Ribonucleoproteína Nuclear Pequena U2/genética , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Genes Dev ; 29(1): 94-107, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25561498

RESUMO

Structural rearrangement of the activated spliceosome (B(act)) to yield a catalytically active complex (B*) is mediated by the DEAH-box NTPase Prp2 in cooperation with the G-patch protein Spp2. However, how the energy of ATP hydrolysis by Prp2 is coupled to mechanical work and what role Spp2 plays in this process are unclear. Using a purified splicing system, we demonstrate that Spp2 is not required to recruit Prp2 to its bona fide binding site in the B(act) spliceosome. In the absence of Spp2, the B(act) spliceosome efficiently triggers Prp2's NTPase activity, but NTP hydrolysis is not coupled to ribonucleoprotein (RNP) rearrangements leading to catalytic activation of the spliceosome. Transformation of the B(act) to the B* spliceosome occurs only when Spp2 is present and is accompanied by dissociation of Prp2 and a reduction in its NTPase activity. In the absence of spliceosomes, Spp2 enhances Prp2's RNA-dependent ATPase activity without affecting its RNA affinity. Our data suggest that Spp2 plays a major role in coupling Prp2's ATPase activity to remodeling of the spliceosome into a catalytically active machine.


Assuntos
Adenosina Trifosfatases/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Catálise , Coenzimas/metabolismo , Ativação Enzimática , Hidrólise , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/genética
12.
RNA ; 19(7): 902-15, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23685439

RESUMO

Step 2 catalysis of pre-mRNA splicing entails the excision of the intron and ligation of the 5' and 3' exons. The tasks of the splicing factors Prp16, Slu7, Prp18, and Prp22 in the formation of the step 2 active site of the spliceosome and in exon ligation, and the timing of their recruitment, remain poorly understood. Using a purified yeast in vitro splicing system, we show that only the DEAH-box ATPase Prp16 is required for formation of a functional step 2 active site and for exon ligation. Efficient docking of the 3' splice site (3'SS) to the active site requires only Slu7/Prp18 but not Prp22. Spliceosome remodeling by Prp16 appears to be subtle as only the step 1 factor Cwc25 is dissociated prior to step 2 catalysis, with its release dependent on docking of the 3'SS to the active site and Prp16 action. We show by fluorescence cross-correlation spectroscopy that Slu7/Prp18 and Prp16 bind early to distinct, low-affinity binding sites on the step-1-activated B* spliceosome, which are subsequently converted into high-affinity sites. Our results shed new light on the factor requirements for step 2 catalysis and the dynamics of step 1 and 2 factors during the catalytic steps of splicing.


Assuntos
Splicing de RNA , RNA Fúngico/metabolismo , Spliceossomos/metabolismo , Leveduras/genética , Catálise , Domínio Catalítico , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Éxons , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , Sítios de Splice de RNA , RNA Fúngico/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espectrometria de Fluorescência , Spliceossomos/genética , Leveduras/metabolismo
13.
Genes Dev ; 27(4): 413-28, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23431055

RESUMO

The spliceosome is a single-turnover enzyme that needs to be dismantled after catalysis to both release the mRNA and recycle small nuclear ribonucleoproteins (snRNPs) for subsequent rounds of pre-mRNA splicing. The RNP remodeling events occurring during spliceosome disassembly are poorly understood, and the composition of the released snRNPs are only roughly known. Using purified components in vitro, we generated post-catalytic spliceosomes that can be dissociated into mRNA and the intron-lariat spliceosome (ILS) by addition of the RNA helicase Prp22 plus ATP and without requiring the step 2 proteins Slu7 and Prp18. Incubation of the isolated ILS with the RNA helicase Prp43 plus Ntr1/Ntr2 and ATP generates defined spliceosomal dissociation products: the intron-lariat, U6 snRNA, a 20-25S U2 snRNP containing SF3a/b, an 18S U5 snRNP, and the "nineteen complex" associated with both the released U2 snRNP and intron-lariat RNA. Our system reproduces the entire ordered disassembly phase of the spliceosome with purified components, which defines the minimum set of agents required for this process. It enabled us to characterize the proteins of the ILS by mass spectrometry and identify the ATPase action of Prp43 as necessary and sufficient for dissociation of the ILS without the involvement of Brr2 ATPase.


Assuntos
Splicing de RNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , RNA Helicases DEAD-box/metabolismo , Íntrons , Fatores de Processamento de RNA , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/química
14.
RNA Biol ; 9(11): 1311-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23064115

RESUMO

Pre-mRNA splicing occurs in two chemical steps that are catalyzed by a large, dynamic RNA-protein complex called the spliceosome. Initially assembled in a catalytically inactive form, the spliceosome undergoes massive compositional and conformational remodeling, through which disparate RNA elements are re-configured and juxtaposed into a functional catalytic center. The intricate construction of the catalytic center requires the assistance of spliceosomal proteins. Recent structure-function analyses have demonstrated that the yeast-splicing factor Cwc2 is a main player that contacts and shapes the catalytic center of the spliceosome into a functional conformation. With this advance, corroborated by the atomic structure of the evolutionarily related group IIC introns, our understanding of the organization and formation of the spliceosomal catalytic center has progressed to a new level.


Assuntos
Precursores de RNA/genética , Sítios de Splice de RNA , Splicing de RNA/genética , RNA Mensageiro/genética , Spliceossomos/genética , Proteínas de Transporte/genética , Catálise , Domínio Catalítico/genética , Humanos , Íntrons/genética , Conformação de Ácido Nucleico , RNA Nuclear Pequeno/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/ultraestrutura , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura
15.
RNA ; 18(6): 1244-56, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22535589

RESUMO

The compositional and conformational changes during catalytic activation of the spliceosome promoted by the DEAH box ATPase Prp2 are only poorly understood. Here, we show by dual-color fluorescence cross-correlation spectroscopy (dcFCCS) that the binding affinity of several proteins is significantly changed during the Prp2-mediated transition of precatalytic B(act) spliceosomes to catalytically activated B* spliceosomes from Saccharomyces cerevisiae. During this step, several proteins, including the zinc-finger protein Cwc24, are quantitatively displaced from the B* complex. Consistent with this, we show that Cwc24 is required for step 1 but not for catalysis per se. The U2-associated SF3a and SF3b proteins Prp11 and Cus1 remain bound to the B* spliceosome under near-physiological conditions, but their binding is reduced at high salt. Conversely, high-affinity binding sites are created for Yju2 and Cwc25 during catalytic activation, consistent with their requirement for step 1 catalysis. Our results suggest high cooperativity of multiple Prp2-mediated structural rearrangements at the spliceosome's catalytic core. Moreover, dcFCCS represents a powerful tool ideally suited to study quantitatively spliceosomal protein dynamics in equilibrium.


Assuntos
RNA Helicases DEAD-box/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Spliceossomos/química , Domínio Catalítico , Ligação Proteica , Espectrometria de Fluorescência/métodos
16.
EMBO J ; 31(9): 2222-34, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22407296

RESUMO

The yeast splicing factor Cwc2 contacts several catalytically important RNA elements in the active spliceosome, suggesting that Cwc2 is involved in determining their spatial arrangement at the spliceosome's catalytic centre. We have determined the crystal structure of the Cwc2 functional core, revealing how a previously uncharacterized Torus domain, an RNA recognition motif (RRM) and a zinc finger (ZnF) are tightly integrated in a compact folding unit. The ZnF plays a pivotal role in the architecture of the whole assembly. UV-induced crosslinking of Cwc2-U6 snRNA allowed the identification by mass spectrometry of six RNA-contacting sites: four in or close to the RRM domain, one in the ZnF and one on a protruding element connecting the Torus and RRM domains. The three distinct regions contacting RNA are connected by a contiguous and conserved positively charged surface, suggesting an expanded interface for RNA accommodation. Cwc2 mutations confirmed that the connector element plays a crucial role in splicing. We conclude that Cwc2 acts as a multipartite RNA-binding platform to bring RNA elements of the spliceosome's catalytic centre into an active conformation.


Assuntos
Proteínas de Ligação a RNA/química , Proteínas de Saccharomyces cerevisiae/química , Sequência de Bases , Dados de Sequência Molecular , Motivos de Nucleotídeos , Dobramento de Proteína , Estrutura Terciária de Proteína , Precursores de RNA/genética , Splicing de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Dedos de Zinco
17.
EMBO J ; 31(6): 1591-604, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22246180

RESUMO

RNA-structural elements play key roles in pre-mRNA splicing catalysis; yet, the formation of catalytically competent RNA structures requires the assistance of spliceosomal proteins. We show that the S. cerevisiae Cwc2 protein functions prior to step 1 of splicing, and it is not required for the Prp2-mediated spliceosome remodelling that generates the catalytically active B complex, suggesting that Cwc2 plays a more sophisticated role in the generation of a functional catalytic centre. In active spliceosomes, Cwc2 contacts catalytically important RNA elements, including the U6 internal stem-loop (ISL), and regions of U6 and the pre-mRNA intron near the 5' splice site, placing Cwc2 at/near the spliceosome's catalytic centre. These interactions are evolutionarily conserved, as shown by studies with Cwc2's human counterpart RBM22, indicating that Cwc2/RBM22-RNA contacts are functionally important. We propose that Cwc2 induces an active conformation of the spliceosome's catalytic RNA elements. Thus, the function of RNA-RNA tertiary interactions within group II introns, namely to induce an active conformation of domain V, may be fulfilled by proteins that contact the functionally analogous U6-ISL, within the spliceosome.


Assuntos
Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Catálise , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Humanos , Íntrons/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Sítios de Splice de RNA , Splicing de RNA , RNA Bacteriano/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
18.
Nat Struct Mol Biol ; 16(12): 1237-43, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19935684

RESUMO

The spliceosome is a ribonucleoprotein machine that removes introns from pre-mRNA in a two-step reaction. To investigate the catalytic steps of splicing, we established an in vitro splicing complementation system. Spliceosomes stalled before step 1 of this process were purified to near-homogeneity from a temperature-sensitive mutant of the RNA helicase Prp2, compositionally defined, and shown to catalyze efficient step 1 when supplemented with recombinant Prp2, Spp2 and Cwc25, thereby demonstrating that Cwc25 has a previously unknown role in promoting step 1. Step 2 catalysis additionally required Prp16, Slu7, Prp18 and Prp22. Our data further suggest that Prp2 facilitates catalytic activation by remodeling the spliceosome, including destabilizing the SF3a and SF3b proteins, likely exposing the branch site before step 1. Remodeling by Prp2 was confirmed by negative stain EM and image processing. This system allows future mechanistic analyses of spliceosome activation and catalysis.


Assuntos
RNA Fúngico/isolamento & purificação , RNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Adenosina Trifosfatases/isolamento & purificação , Adenosina Trifosfatases/metabolismo , RNA Helicases DEAD-box/isolamento & purificação , RNA Helicases DEAD-box/metabolismo , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica/métodos , Modelos Biológicos , RNA Helicases/isolamento & purificação , RNA Helicases/metabolismo , Fatores de Processamento de RNA , Ribonucleoproteína Nuclear Pequena U2/isolamento & purificação , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Ribonucleoproteína Nuclear Pequena U5/isolamento & purificação , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribonucleoproteínas Nucleares Pequenas/isolamento & purificação , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Spliceossomos/ultraestrutura
19.
J Biol Chem ; 277(43): 41023-31, 2002 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-12189143

RESUMO

We here report on the identification and detailed biochemical characterization of two novel GTPase-activating proteins, Gyp5p and Gyp8p, whose efficient substrate is Ypt1p, a Ypt/Rab-GTPase essential for endoplasmic reticulum-to-Golgi trafficking in yeast. Gyp5p accelerated the intrinsic GTPase activity of Ypt1p 4.2 x 10(4)-fold and, surprisingly, the 40-fold reduced GTP hydrolysis rate of Ypt1(Q67L)p 1.5 x 10(4)-fold. At steady state, the two newly discovered GTPase-activating proteins (GAPs) as well as the previously described Gyp1p, which also uses Ypt1p as the preferred substrate, display different subcellular localization. To add to an understanding of the significance of Ypt1p-bound GTP hydrolysis in vivo, yeast strains expressing the GTPase-deficient Ypt1(Q67L)p and having different Ypt1-GAP genes deleted were created. Depending on the genetic background, different mutants exhibited growth defects at low temperature and, already at permissive temperature, various morphological alterations resembling autophagy. Transport of proteins was not significantly impaired. Growth defects of Ypt1(Q67L)-expressing cells could be suppressed on high expression of all three Ypt1-GAPs. We propose that permanently active Ypt1p leads to increased vesicle fusion, which might induce previously unnoticed autophagic degradation of exaggerated membrane-enclosed structures. The data indicate that hydrolysis of Ypt1p-bound GTP is a prerequisite for a balanced vesicle flow between endoplasmic reticulum and Golgi compartments.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Complexo de Golgi/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas rab de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Autofagia , Sequência de Bases , Primers do DNA , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Hidrólise , Microscopia Eletrônica , Dados de Sequência Molecular , Transporte Proteico , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...