Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Heliyon ; 9(2): e13449, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873154

RESUMO

The field of cell biology has seen major advances in both cellular imaging modalities and the development of automated image analysis platforms that increase rigor, reproducibility, and throughput for large imaging data sets. However, there remains a need for tools that provide accurate morphometric analysis of single cells with complex, dynamic cytoarchitecture in a high-throughput and unbiased manner. We developed a fully automated image-analysis algorithm to rapidly detect and quantify changes in cellular morphology using microglia cells, an innate immune cell within the central nervous system, as representative of cells that exhibit dynamic and complex cytoarchitectural changes. We used two preclinical animal models that exhibit robust changes in microglia morphology: (1) a rat model of acute organophosphate intoxication, which was used to generate fluorescently labeled images for algorithm development; and (2) a rat model of traumatic brain injury, which was used to validate the algorithm using cells labeled using chromogenic detection methods. All ex vivo brain sections were immunolabeled for IBA-1 using fluorescence or diaminobenzidine (DAB) labeling, images were acquired using a high content imaging system and analyzed using a custom-built algorithm. The exploratory data set revealed eight statistically significant and quantitative morphometric parameters that distinguished between phenotypically distinct groups of microglia. Manual validation of single-cell morphology was strongly correlated with the automated analysis and was further supported by a comparison with traditional stereology methods. Existing image analysis pipelines rely on high-resolution images of individual cells, which limits sample size and is subject to selection bias. However, our fully automated method integrates quantification of morphology and fluorescent/chromogenic signals in images from multiple brain regions acquired using high-content imaging. In summary, our free, customizable image analysis tool provides a high-throughput, unbiased method for accurately detecting and quantifying morphological changes in cells with complex morphologies.

2.
Mol Metab ; 43: 101114, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166742

RESUMO

OBJECTIVE: The lack of effective treatments against diabetic sensorimotor polyneuropathy demands the search for new strategies to combat or prevent the condition. Because reduced magnesium and increased methylglyoxal levels have been implicated in the development of both type 2 diabetes and neuropathic pain, we aimed to assess the putative interplay of both molecules with diabetic sensorimotor polyneuropathy. METHODS: In a cross-sectional study, serum magnesium and plasma methylglyoxal levels were measured in recently diagnosed type 2 diabetes patients with (n = 51) and without (n = 184) diabetic sensorimotor polyneuropathy from the German Diabetes Study baseline cohort. Peripheral nerve function was assessed using nerve conduction velocity and quantitative sensory testing. Human neuroblastoma cells (SH-SY5Y) and mouse dorsal root ganglia cells were used to characterize the neurotoxic effect of methylglyoxal and/or neuroprotective effect of magnesium. RESULTS: Here, we demonstrate that serum magnesium concentration was reduced in recently diagnosed type 2 diabetes patients with diabetic sensorimotor polyneuropathy and inversely associated with plasma methylglyoxal concentration. Magnesium, methylglyoxal, and, importantly, their interaction were strongly interrelated with methylglyoxal-dependent nerve dysfunction and were predictive of changes in nerve function. Magnesium supplementation prevented methylglyoxal neurotoxicity in differentiated SH-SY5Y neuron-like cells due to reduction of intracellular methylglyoxal formation, while supplementation with the divalent cations zinc and manganese had no effect on methylglyoxal neurotoxicity. Furthermore, the downregulation of mitochondrial activity in mouse dorsal root ganglia cells and consequently the enrichment of triosephosphates, the primary source of methylglyoxal, resulted in neurite degeneration, which was completely prevented through magnesium supplementation. CONCLUSIONS: These multifaceted findings reveal a novel putative pathophysiological pathway of hypomagnesemia-induced carbonyl stress leading to neuronal damage and merit further investigations not only for diabetic sensorimotor polyneuropathy but also other neurodegenerative diseases associated with magnesium deficiency and impaired energy metabolism.


Assuntos
Magnésio/metabolismo , Polineuropatias/metabolismo , Aldeído Pirúvico/metabolismo , Animais , Estudos Transversais , Diabetes Mellitus/metabolismo , Neuropatias Diabéticas/etiologia , Metabolismo Energético , Feminino , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Neurônios/metabolismo , Polineuropatias/fisiopatologia , Córtex Sensório-Motor/metabolismo
3.
J Neurosci Methods ; 341: 108793, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32461071

RESUMO

BACKGROUND: Primary neuronal cell cultures are useful for studying mechanisms that influence dendritic morphology during normal development and in response to various stressors. However, analyzing dendritic morphology is challenging, particularly in cultures with high cell density, and manual methods of selecting neurons and tracing dendritic arbors can introduce significant bias, and are labor-intensive. To overcome these challenges, semi-automated and automated methods are being developed, with most software solutions requiring computer-assisted dendrite tracing with subsequent quantification of various parameters of dendritic morphology, such as Sholl analysis. However fully automated approaches for classic Sholl analysis of dendritic complexity are not currently available. NEW METHOD: The previously described Omnisphero software, was extended by adding new functions to automatically assess dendritic mass, total length of the dendritic arbor and the number of primary dendrites, branch points, and terminal tips, and to perform Sholl analysis. RESULTS: The new functions for assessing dendritic morphology were validated using primary mouse hippocampal and rat cortical neurons transfected with a fluorescently tagged MAP2 cDNA construct. These functions allow users to select specific populations of neurons as a training set for subsequent automated selection of labeled neurons in high-density cultures. COMPARISON WITH EXISTING SEMI-AUTOMATED METHODS: Compared to manual or semi-automated analyses of dendritic arborization, the new functions increase throughput while significantly decreasing researcher bias associated with neuron selection, tracing, and thresholding. CONCLUSION: These results demonstrate the importance of using unbiased automated methods to mitigate experimenter-dependent bias in analyzing dendritic morphology.


Assuntos
Hipocampo , Neurônios , Animais , Dendritos , Processamento de Imagem Assistida por Computador , Camundongos , Plasticidade Neuronal , Ratos
4.
Stem Cell Res ; 45: 101761, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32244191

RESUMO

Neurotoxicity is mediated by a variety of modes-of-actions leading to disturbance of neuronal function. In order to screen larger numbers of compounds for their neurotoxic potential, in vitro functional neuronal networks (NN) might be helpful tools. We established and characterized human NN (hNN) from hiPSC-derived neural progenitor cells by comparing hNN formation with two different differentiation media: in presence (CINDA) and absence (neural differentiation medium (NDM)) of maturation-supporting factors. As a NN control we included differentiating rat NN (rNN) in the study. Gene/protein expression and electrical activity from in vitro developing NN were assessed at multiple time points. Transcriptomes of 5, 14 and 28 days in vitro CINDA-grown hNN were compared to gene expression profiles of in vivo human developing brains. Molecular expression analyses as well as measures of electrical activity indicate that NN mature into neurons of different subtypes and astrocytes over time. In contrast to rNN, hNN are less electrically active within the same period of differentiation time, yet hNN grown in CINDA medium develop higher firing rates than hNN without supplements. Challenge of NN with neuronal receptor stimulators and inhibitors demonstrate presence of inhibitory, GABAergic neurons, whereas glutamatergic responses are limited. hiPSC-derived GABAergic hNN grown in CINDA medium might be a useful tool as part of an in vitro battery for assessing neurotoxicity.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Potenciais de Ação , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Neurônios , Ratos
5.
Eur J Neurosci ; 50(6): 3028-3045, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30883949

RESUMO

We have previously shown that total knockout of fibroblast growth factor-2 (FGF-2) results in prolonged survival and improved motor performance in superoxide dismutase 1 (SOD1G93A ) mutant mice, the most widely used animal model of the fatal adult onset motor neuron disease amyotrophic lateral sclerosis (ALS). Moreover, we found differential expression of growth factors in SOD1G93A mice, with distinct regulation patterns of FGF-2 in spinal cord and muscle tissue. Within the present study we aimed to characterize FGF-2-isoform specific effects on survival, motor performance as well as gene expression patterns predominantly in muscle tissue by generating double mutant SOD1G93A FGF-2 high molecular weight- and SOD1G93A FGF-2 low molecular weight-knockout mice. While isoform specific depletion was not beneficial regarding survival or motor performance of double mutant mice, we found isoform-dependent differential gene expression of epidermal growth factor (EGF) in the muscle of SOD1G93A FGF-2 low molecular weight knockout mice compared to single mutant SOD1G93A mice. This significant downregulation of EGF in the muscle tissue of double mutant SOD1G93A FGF-2 low molecular weight knockout mice implies that FGF-2 low molecular weight knockout (or the presence of the FGF-2 high molecular weight isoform) selectively impacts EGF gene expression in ALS muscle tissue.


Assuntos
Esclerose Lateral Amiotrófica/genética , Fator 2 de Crescimento de Fibroblastos/genética , Longevidade/genética , Isoformas de Proteínas/genética , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Fator 2 de Crescimento de Fibroblastos/metabolismo , Expressão Gênica , Camundongos , Camundongos Knockout , Neurônios Motores/metabolismo , Isoformas de Proteínas/metabolismo , Superóxido Dismutase-1/metabolismo
6.
Brain Struct Funct ; 224(1): 373-386, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30341743

RESUMO

We demonstrate the impact of a disrupted molecular clock in Bmal1-deficient (Bmal1-/-) mice on migration of neural progenitor cells (NPCs). Proliferation of NPCs in rostral migratory stream (RMS) was reduced in Bmal1-/- mice, consistent with our earlier studies on adult neurogenesis in hippocampus. However, a significantly higher number of NPCs from Bmal1-/- mice reached the olfactory bulb as compared to wild-type littermates (Bmal1+/+ mice), indicating a higher migration velocity in Bmal1-/- mice. In isolated NPCs from Bmal1-/- mice, not only migration velocity and expression pattern of genes involved in detoxification of reactive oxygen species were affected, but also RNA oxidation of catalase was increased and catalase protein levels were decreased. Bmal1+/+ migration phenotype could be restored by treatment with catalase, while treatment of NPCs from Bmal1+/+ mice with hydrogen peroxide mimicked Bmal1-/- migration phenotype. Thus, we conclude that Bmal1 deficiency affects NPC migration as a consequence of dysregulated detoxification of reactive oxygen species.


Assuntos
Fatores de Transcrição ARNTL/deficiência , Movimento Celular , Células-Tronco Neurais/metabolismo , Neurogênese , Bulbo Olfatório/metabolismo , Fatores de Transcrição ARNTL/genética , Animais , Catalase/metabolismo , Células Cultivadas , Cofilina 1/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Bulbo Olfatório/citologia , Estresse Oxidativo , Fenótipo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fatores de Tempo
7.
Toxicol Sci ; 167(1): 77-91, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30364989

RESUMO

To screen the tens of thousands of chemicals for which no toxicity data currently exists, it is necessary to move from in vivo rodent models to alternative models, such as zebrafish. Here, we used dechorionated Tropical 5D wild-type zebrafish embryos to screen a 91-compound library provided by the National Toxicology Program (NTP) for developmental toxicity. This library contained 86 unique chemicals that included negative controls, flame retardants, polycyclic aromatic hydrocarbons (PAHs), drugs, industrial chemicals, and pesticides. Fish were exposed to 5 concentrations of each chemical or an equal amount of vehicle (0.5% DMSO) in embryo medium from 6 h post-fertilization (hpf) to 5 days post-fertilization (dpf). Fish were examined daily for mortality and teratogenic effects and photomotor behavior was assessed at 4 and 5 dpf. Of the 5 negative control compounds in the library, none caused mortality/teratogenesis, but two altered behavior. Chemicals provided in duplicate produced similar outcomes. Overall, 13 compounds caused mortality/teratology but not behavioral abnormalities, 24 only affected behavior, and 18 altered both endpoints, with behavior affected at concentrations that did not cause mortality/teratology (55/86 hits). Of the compounds that affected behavior, 52% caused behavioral abnormalities at either 4 or 5 dpf. Compounds within the same functional group caused different behavioral abnormalities, while similar behavioral patterns were caused by compounds from different groups. Our data suggest that behavior is a sensitive endpoint for developmental toxicity screening that integrates multiple modes of toxic action and is influenced by the age of the larval fish at the time of testing.


Assuntos
Comportamento Animal/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/toxicidade , Teratogênicos/toxicidade , Testes de Toxicidade/métodos , Peixe-Zebra , Animais , Determinação de Ponto Final , Programas Governamentais , National Institute of Environmental Health Sciences (U.S.) , Estados Unidos
8.
J Cell Physiol ; 234(5): 7395-7410, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30370540

RESUMO

We have previously shown that knockout of fibroblast growth factor-2 (FGF-2) and potential compensatory effects of other growth factors result in amelioration of disease symptoms in a transgenic mouse model of amyotrophic lateral sclerosis (ALS). ALS is a rapidly progressive neurological disorder leading to degeneration of cortical, brain stem, and spinal motor neurons followed by subsequent denervation and muscle wasting. Mutations in the superoxide dismutase 1 (SOD1) gene are responsible for approximately 20% of familial ALS cases and SOD1 mutant mice still are among the models best mimicking clinical and neuropathological characteristics of ALS. The aim of the present study was a thorough characterization of FGF-2 and other growth factors and signaling effectors in vivo in the SOD1G93A mouse model. We observed tissue-specific opposing gene regulation of FGF-2 and overall dysregulation of other growth factors, which in the gastrocnemius muscle was associated with reduced downstream extracellular-signal-regulated kinases (ERK) and protein kinase B (AKT) activation. To further investigate whether the effects of FGF-2 on motor neuron death are mediated by glial cells, astrocytes lacking FGF-2 were cocultured together with mutant SOD1 G93A motor neurons. FGF-2 had an impact on motor neuron maturation indicating that astrocytic FGF-2 affects motor neurons at a developmental stage. Moreover, neuronal gene expression patterns showed FGF-2- and SOD1 G93A -dependent changes in ciliary neurotrophic factor, glial-cell-line-derived neurotrophic factor, and ERK2, implying a potential involvement in ALS pathogenesis before the onset of clinical symptoms.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Astrócitos/enzimologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Neurônios Motores/enzimologia , Músculo Esquelético/enzimologia , Superóxido Dismutase-1/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/patologia , Morte Celular , Células Cultivadas , Modelos Animais de Doenças , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator 2 de Crescimento de Fibroblastos/deficiência , Fator 2 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios Motores/patologia , Mutação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Superóxido Dismutase-1/genética
10.
Arch Toxicol ; 92(10): 3163-3173, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30132043

RESUMO

Polychlorinated biphenyls (PCBs), and in particular non-dioxin-like (NDL) congeners, continue to pose a significant risk to the developing nervous system. PCB 95, a prevalent NDL congener in the human chemosphere, promotes dendritic growth in rodent primary neurons by activating calcium-dependent transcriptional mechanisms that normally function to link activity to dendritic growth. Activity-dependent dendritic growth is also mediated by calcium-dependent translational mechanisms involving mechanistic target of rapamycin (mTOR), suggesting that the dendrite-promoting activity of PCB 95 may also involve mTOR signaling. Here, we test this hypothesis using primary neuron-glia co-cultures derived from the hippocampi of postnatal day 0 Sprague Dawley rats. PCB 95 (1 nM) activated mTOR in hippocampal cultures as evidenced by increased phosphorylation of mTOR at ser2448. Pharmacologic inhibition of mTOR signaling using rapamycin (20 nM), FK506 (5 nM), or 4EGI-1 (1 µM), and siRNA knockdown of mTOR, or the mTOR complex binding proteins, raptor or rictor, blocked PCB 95-induced dendritic growth. These data identify mTOR activation as a novel molecular mechanism contributing to the effects of PCB 95 on dendritic arborization. In light of clinical data linking gain-of-function mutations in mTOR signaling to neurodevelopmental disorders, our findings suggest that mTOR signaling may represent a convergence point for gene by environment interactions that confer risk for adverse neurodevelopmental outcomes.


Assuntos
Dendritos/efeitos dos fármacos , Hipocampo/citologia , Neurônios/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Serina-Treonina Quinases TOR/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Técnicas de Cocultura , Dendritos/fisiologia , Feminino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Neuroglia/citologia , Neurônios/metabolismo , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteína 1A de Ligação a Tacrolimo/metabolismo
11.
Toxicol Sci ; 165(1): 14-20, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982725

RESUMO

Human brain development consists of a series of complex spatiotemporal processes that if disturbed by chemical exposure causes irreversible impairments of the nervous system. To evaluate a chemical disturbance in an alternative assay, the concept evolved that the complex procedure of brain development can be disassembled into several neurodevelopmental endpoints which can be represented by a combination of different alternative assays. In this review article, we provide a scientific rationale for the neurodevelopmental endpoints that are currently chosen to establish assays with human stem/and progenitor cells. Assays covering these major neurodevelopmental endpoints are thought to assemble as building blocks of a DNT testing battery.


Assuntos
Encéfalo/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Testes de Toxicidade/métodos , Animais , Apoptose/efeitos dos fármacos , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células-Tronco Embrionárias/patologia , Humanos , Células-Tronco Neurais/patologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/patologia
12.
Toxicol Sci ; 165(1): 21-30, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982830

RESUMO

There is evidence that chemical exposure during development can cause irreversible impairments of the human developing nervous system. Therefore, testing compounds for their developmentally neurotoxic potential has high priority for different stakeholders: academia, industry, and regulatory bodies. Due to the resource-intensity of current developmental neurotoxicity (DNT) in vivo guidelines, alternative methods that are scientifically valid and have a high predictivity for humans are especially desired by regulators. Here, we review availability of stem-/progenitor cell-based in vitro methods for DNT evaluation that is based on the concept of neurodevelopmental process assessment. These test methods are assembled into a DNT in vitro testing battery. Gaps in this testing battery addressing research needs are also pointed out.


Assuntos
Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Sistema Nervoso/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Testes de Toxicidade/métodos , Alternativas aos Testes com Animais , Animais , Apoptose/efeitos dos fármacos , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Células-Tronco Embrionárias/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Sistema Nervoso/embriologia , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/patologia , Células-Tronco Neurais/patologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/patologia
13.
Stem Cell Res ; 25: 72-82, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29112887

RESUMO

Developmental neurotoxicity (DNT) testing performed in rats is resource-intensive (costs, time, animals) and bears the issue of species extrapolation. Thus, reliable alternative human-based approaches are needed for predicting neurodevelopmental toxicity. Human induced pluripotent stem cells (hiPSCs) represent a basis for an alternative method possibly being part of an alternative DNT testing strategy. Here, we compared two hiPSC neural induction protocols resulting in 3D neurospheres: one using noggin and one cultivating cells in neural induction medium (NIM protocol). Performance of Nestin+/SOX2+ hiPSC-derived neural progenitor cells (NPCs) was compared to primary human NPCs. Generally, primary hNPCs first differentiate into Nestin+ and/or GFAP+ radial glia-like cells, while the hiPSC-derived NPCs (hiPSC-NPC) first differentiate into ßIII-Tubulin+ neurons suggesting an earlier developmental stage of hiPSC-NPC. In the 'Neurosphere Assay', NIM generated hiPSC-NPC produced neurons with higher performance than with the noggin protocol. After long-term differentiation, hiPSC-NPC form neuronal networks, which become electrically active on microelectrode arrays after 85days. Finally, methylmercury chloride inhibits hiPSC-NPC and hNPC migration with similar potencies. hiPSC-NPCs-derived neurospheres seem to be useful for DNT evaluation representing early neural development in vitro. More system characterization by compound testing is needed to gain higher confidence in this method.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Neurogênese/fisiologia , Neurônios/citologia
14.
Arch Toxicol ; 91(4): 2017-2028, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27722930

RESUMO

Current developmental neurotoxicity (DNT) testing in animals faces major limitations, such as high cost and time demands as well as uncertainties in their methodology, evaluation and regulation. Therefore, the use of human-based 3D in vitro systems in combination with high-content image analysis (HCA) might contribute to DNT testing with lower costs, increased throughput and enhanced predictivity for human hazard identification. Human neural progenitor cells (hNPCs) grown as 3D neurospheres mimic basic processes of brain development including hNPC migration and differentiation and are therefore useful for DNT hazard identification. HCA of migrated neurospheres creates new challenges for automated evaluations because it encompasses variable cell densities, inconsistent z-layers and heterogeneous cell populations. We tackle those challenges with our Omnisphero software, which assesses multiple endpoints of the 'Neurosphere Assay.' For neuronal identification, Omnisphero reaches a true positive rate (TPR) of 83.8 % and a false discovery rate (FDR) of 11.4 %, thus being comparable to the interindividual difference among two researchers (TPR = 94.3, FDR = 11.0 %) and largely improving the results obtained by an existing HCA approach, whose TPR does not exceed 50 % at a FDR above 50 %. The high FDR of existing methods results in incorrect measurements of neuronal morphological features accompanied by an overestimation of compound effects. Omnisphero additionally includes novel algorithms to assess 'neurosphere-specific' endpoints like radial migration and neuronal density distribution within the migration area. Furthermore, a user-assisted parameter optimization procedure makes Omnisphero accessible to non-expert end users.


Assuntos
Células-Tronco Neurais/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Organoides/efeitos dos fármacos , Testes de Toxicidade/métodos , Alternativas aos Testes com Animais , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Imageamento Tridimensional/métodos , Células-Tronco Neurais/patologia , Organoides/patologia
15.
Arch Toxicol ; 91(2): 827-837, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27116294

RESUMO

Food supplements based on herbal products are widely used during pregnancy as part of a self-care approach. The idea that such supplements are safe and healthy is deeply seated in the general population, although they do not underlie the same strict safety regulations than medical drugs. We aimed to characterize the neurodevelopmental effects of the green tea catechin epigallocatechin gallate (EGCG), which is now commercialized as high-dose food supplement. We used the "Neurosphere Assay" to study the effects and unravel underlying molecular mechanisms of EGCG treatment on human and rat neural progenitor cells (NPCs) development in vitro. EGCG alters human and rat NPC development in vitro. It disturbs migration distance, migration pattern, and nuclear density of NPCs growing as neurospheres. These functional impairments are initiated by EGCG binding to the extracellular matrix glycoprotein laminin, preventing its binding to ß1-integrin subunits, thereby prohibiting cell adhesion and resulting in altered glia alignment and decreased number of migrating young neurons. Our data raise a concern on the intake of high-dose EGCG food supplements during pregnancy and highlight the need of an in vivo characterization of the effects of high-dose EGCG exposure during neurodevelopment.


Assuntos
Catequina/análogos & derivados , Células-Tronco Neurais/efeitos dos fármacos , Animais , Catequina/administração & dosagem , Catequina/efeitos adversos , Catequina/metabolismo , Catequina/farmacologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Suplementos Nutricionais , Feminino , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Integrina beta1/metabolismo , Laminina/metabolismo , Nestina/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Gravidez , Ratos
16.
Neurotoxicology ; 43: 127-133, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24572144

RESUMO

5-Bromo-2-deoxyuridine (BrdU) staining is often used to evaluate cortical layer formation during mammalian brain development. This method allows the quantification of newly generated cells and therefore the study of the effects of xenobiotics or genetic factors on proliferation, cell death and migration behavior in a quantitative manner. However, these endpoints are generally assessed by time-consuming manual evaluation. In the present work, we introduce a novel procedure to identify and quantify BrdU(+) cells within cortical layers, using the commercially available vHCS-Scan V.6.3.1 software to identify BrdU(+) cell coordinates and the novel program 'BrdeLuxe' to define cortical layers and quantitatively assign BrdU(+) cells to them. This procedure is compared to BrdU(+) cell counting with the freeware 'ImageJ' in respect to the manual evaluation, all by two different researchers. BrdeLuxe shows high accuracy and precision for the determination of total number of BrdU(+) cells compared to the manual counting, while ImageJ does not reach such results. Accuracy and precision are also higher for employing the BrdeLuxe program to evaluate the percentage of BrdU(+) cells per brain layer compared to ImageJ. In terms of running time, BrdeLuxe is the fastest method of the three making it more suitable for multiple brain slices analyses.


Assuntos
Bromodesoxiuridina/metabolismo , Movimento Celular/fisiologia , Córtex Cerebral/citologia , Processamento Eletrônico de Dados , Neurônios/fisiologia , Análise de Variância , Animais , Contagem de Células , Embrião de Mamíferos , Feminino , Técnicas In Vitro , Rede Nervosa/metabolismo , Imagem Óptica , Gravidez , Ratos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...