Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(43): 51343-51350, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34672190

RESUMO

Carbon nanotube-based donor-acceptor devices are used in applications ranging from photovoltaics and sensors to environmental remediation. Non-covalent contacts between donor dyes and nanotubes are often used to optimize sensitization and scalability. However, inconsistency is often observed despite donor dye studies reporting strong donor-acceptor interactions. Here, we demonstrate that the dye binding location is an important factor in this process: we used coated-acceptor chromatic responses and find that dye binding is affected by the coating layer. The emission response to free- and protein-sequestered porphyrin was tested to compare direct and indirect dye contact. An acceptor complex that preferentially red-shifts in response to sequestered porphyrin was identified. We observe inconsistent optical signals that suggest porphyrin-dye interactions are best described as coating-centric; therefore, the coating interface must be considered in application and assay design.

2.
Proc Natl Acad Sci U S A ; 117(10): 5291-5297, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32098845

RESUMO

Heterotropic allosteric activation of protein function, in which binding of one ligand thermodynamically activates the binding of another, different ligand or substrate, is a fundamental control mechanism in metabolism and as such has been a long-aspired capability in protein design. Here we show that greatly increasing the magnitude of a protein's net charge using surface supercharging transforms that protein into an allosteric ligand- and counterion-gated conformational molecular switch. To demonstrate this we first modified the designed helical bundle hemoprotein H4, creating a highly charged protein which both unfolds reversibly at low ionic strength and undergoes the ligand-induced folding transition commonly observed in signal transduction by intrinsically disordered proteins in biology. As a result of the high surface-charge density, ligand binding to this protein is allosterically activated up to 1,300-fold by low concentrations of divalent cations and the polyamine spermine. To extend this process further using a natural protein, we similarly modified Escherichia coli cytochrome b562 and the resulting protein behaves in a like manner. These simple model systems not only establish a set of general engineering principles which can be used to convert natural and designed soluble proteins into allosteric molecular switches useful in biodesign, sensing, and synthetic biology, the behavior we have demonstrated--functional activation of supercharged intrinsically disordered proteins by low concentrations of multivalent ions--may be a control mechanism utilized by Nature which has yet to be appreciated.


Assuntos
Grupo dos Citocromos b/química , Proteínas de Escherichia coli/química , Hemeproteínas/química , Proteínas Intrinsicamente Desordenadas/química , Engenharia de Proteínas/métodos , Regulação Alostérica , Cálcio/química , Cátions Bivalentes/química , Ligantes , Magnésio/química , Conformação Proteica , Dobramento de Proteína , Espermina/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...