Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Redox Biol ; 54: 102370, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35759945

RESUMO

Red blood cells (RBCs) were shown to transport and release nitric oxide (NO) bioactivity and carry an endothelial NO synthase (eNOS). However, the pathophysiological significance of RBC eNOS for cardioprotection in vivo is unknown. Here we aimed to analyze the role of RBC eNOS in the regulation of coronary blood flow, cardiac performance, and acute myocardial infarction (AMI) in vivo. To specifically distinguish the role of RBC eNOS from the endothelial cell (EC) eNOS, we generated RBC- and EC-specific knock-out (KO) and knock-in (KI) mice by Cre-induced inactivation or reactivation of eNOS. We found that RBC eNOS KO mice had fully preserved coronary dilatory responses and LV function. Instead, EC eNOS KO mice had a decreased coronary flow response in isolated perfused hearts and an increased LV developed pressure in response to elevated arterial pressure, while stroke volume was preserved. Interestingly, RBC eNOS KO showed a significantly increased infarct size and aggravated LV dysfunction with decreased stroke volume and cardiac output. This is consistent with reduced NO bioavailability and oxygen delivery capacity in RBC eNOS KOs. Crucially, RBC eNOS KI mice had decreased infarct size and preserved LV function after AMI. In contrast, EC eNOS KO and EC eNOS KI had no differences in infarct size or LV dysfunction after AMI, as compared to the controls. These data demonstrate that EC eNOS controls coronary vasodilator function, but does not directly affect infarct size, while RBC eNOS limits infarct size in AMI. Therefore, RBC eNOS signaling may represent a novel target for interventions in ischemia/reperfusion after myocardial infarction.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Eritrócitos , Coração , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/genética , Traumatismo por Reperfusão Miocárdica/genética , Óxido Nítrico , Óxido Nítrico Sintase Tipo III/genética , Vasodilatadores
3.
Nitric Oxide ; 125-126: 69-77, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35752264

RESUMO

Arginase 1 (Arg1) is a ubiquitous enzyme belonging to the urea cycle that catalyzes the conversion of l-arginine into l-ornithine and urea. In endothelial cells (ECs), Arg1 was proposed to limit the availability of l-arginine for the endothelial nitric oxide synthase (eNOS) and thereby reduce nitric oxide (NO) production, thus promoting endothelial dysfunction and vascular disease. The role of EC Arg1 under homeostatic conditions is in vivo less understood. The aim of this study was to investigate the role of EC Arg1 on the regulation of eNOS, vascular tone, and endothelial function under normal homeostatic conditions in vivo and ex vivo. By using a tamoxifen-inducible EC-specific gene-targeting approach, we generated EC Arg1 KO mice. Efficiency and specificity of the gene targeting strategy was demonstrated by DNA recombination and loss of Arg1 expression measured after tamoxifen treatment in EC only. In EC Arg1 KO mice we found a significant decrease in Arg1 expression in heart and lung ECs and in the aorta, however, vascular enzymatic activity was preserved likely due to the presence of high levels of Arg1 in smooth muscle cells. Moreover, we found a downregulation of eNOS expression in the aorta, and a fully preserved systemic l-arginine and NO bioavailability, as demonstrated by the levels of l-arginine, l-ornithine, and l-citrulline as well as nitrite, nitrate, and nitroso-species. Lung and liver tissues from EC Arg1 KO mice showed respectively increase or decrease in nitrosyl-heme species, indicating that the lack of endothelial Arg1 affects NO bioavailability in these organs. In addition, EC Arg1 KO mice showed fully preserved acetylcholine-mediated vascular relaxation in both conductance and resistant vessels but increased phenylephrine-induced vasoconstriction. Systolic, diastolic, and mean arterial pressure and cardiac performance in EC Arg1 KO mice were not different from the wild-type littermate controls. In conclusion, under normal homeostatic conditions, lack of EC Arg1 expression is associated with a down-regulation of eNOS expression but a preserved NO bioavailability and vascular endothelial function. These results suggest that a cross-talk exists between Arg1 and eNOS to control NO production in ECs, which depends on both L-Arg availability and EC Arg1-dependent eNOS expression.


Assuntos
Arginase , Óxido Nítrico Sintase Tipo III , Animais , Arginase/genética , Arginase/metabolismo , Arginina/metabolismo , Regulação para Baixo , Células Endoteliais/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ornitina , Tamoxifeno/metabolismo , Ureia/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 41(10): 2551-2562, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34380333

RESUMO

Objective: The dominant driver of arteriogenesis is elevated shear stress sensed by the endothelial glycocalyx thereby promoting arterial outward remodeling. Hyaluronan, a critical component of the endothelial glycocalyx, is synthesized by 3 HAS isoenzymes (hyaluronan synthases 1-3) at the plasma membrane. Considering further the importance of HAS3 for smooth muscle cell and immune cell functions we aimed to evaluate its role in collateral artery growth. Approach and Results: Male Has3-deficient (Has3-KO) mice were subjected to hindlimb ischemia. Blood perfusion was monitored by laser Doppler perfusion imaging and endothelial function was assessed by measurement of flow-mediated dilation in vivo. Collateral remodeling was monitored by high resolution magnetic resonance angiography. A neutralizing antibody against CD44 (clone KM201) was injected intraperitoneally to analyze hyaluronan signaling in vivo. After hindlimb ischemia, Has3-KO mice showed a reduced arteriogenic response with decreased collateral remodeling and impaired perfusion recovery. While postischemic leukocyte infiltration was unaffected, a diminished flow-mediated dilation pointed towards an impaired endothelial cell function. Indeed, endothelial AKT (protein kinase B)-dependent eNOS (endothelial nitric oxide synthase) phosphorylation at Ser1177 was substantially reduced in Has3-KO thigh muscles. Endothelial-specific Has3-KO mice mimicked the hindlimb ischemia-induced phenotype of impaired perfusion recovery as observed in global Has3-deficiency. Mechanistically, blocking selectively the hyaluronan binding site of CD44 reduced flow-mediated dilation, thereby suggesting hyaluronan signaling through CD44 as the underlying signaling pathway. Conclusions: In summary, HAS3 contributes to arteriogenesis in hindlimb ischemia by hyaluronan/CD44-mediated stimulation of eNOS phosphorylation at Ser1177. Thus, strategies augmenting endothelial HAS3 or CD44 could be envisioned to enhance vascularization under pathological conditions.


Assuntos
Células Endoteliais/enzimologia , Membro Posterior/irrigação sanguínea , Receptores de Hialuronatos/metabolismo , Hialuronan Sintases/metabolismo , Isquemia/enzimologia , Neovascularização Fisiológica , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Circulação Colateral , Modelos Animais de Doenças , Humanos , Hialuronan Sintases/genética , Isquemia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Óxido Nítrico Sintase Tipo III/genética , Fosforilação , Fluxo Sanguíneo Regional , Transdução de Sinais , Fatores de Tempo
5.
Matrix Biol ; 102: 20-36, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34464693

RESUMO

The association between hyaluronan (HA) accumulation and increased inflammation in the colon suggests that HA is a potential therapeutic target in inflammatory bowel disease (IBD). However, whether patients with IBD would benefit from interference with HA synthesis is unknown. Here, we used pharmacological and genetic approaches to investigate the impact of systemic and partial blockade of HA synthesis in the Dextran Sodium Sulfate (DSS)-induced colitis model. To systemically inhibit HA production, we used 4-Methylumbelliferone (4-MU), whereas genetic approaches included the generation of mice with global or inducible cell-type specific deficiency in the Hyaluronan synthase 3 (Has3). We found that 4-MU treatment did not ameliorate but exacerbated disease severity characterized by increased body weight loss and enhanced colon tissue destruction compared to control mice without colitis. In contrast, global Has3 deficiency had a profound protective effect as reflected by a low colitis score and reduced infiltration of immune cells into the colon. To get further mechanistic insight into the proinflammatory role of HAS3, we deleted Has3 in a cell-type specific manner. Interestingly, while lack of Has3 expression in intestinal epithelial and smooth muscle cells had no effect or was rather proinflammatory, mice with Has3 deficiency in the endothelium were strongly protected against acute colitis. We conclude that endothelium-derived HAS3 plays a critical role in driving experimental colitis, warranting future studies on cell type-specific therapeutic interference with HA production in human IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Colite/induzido quimicamente , Colite/genética , Modelos Animais de Doenças , Endotélio , Humanos , Hialuronan Sintases/genética , Doenças Inflamatórias Intestinais/genética , Camundongos , Camundongos Endogâmicos C57BL , Modelos Teóricos
6.
Circulation ; 144(11): 870-889, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34229449

RESUMO

BACKGROUND: Current paradigms suggest that nitric oxide (NO) produced by endothelial cells (ECs) through endothelial nitric oxide synthase (eNOS) in the vessel wall is the primary regulator of blood flow and blood pressure. However, red blood cells (RBCs) also carry a catalytically active eNOS, but its role is controversial and remains undefined. This study aimed to elucidate the functional significance of RBC eNOS compared with EC eNOS for vascular hemodynamics and nitric oxide metabolism. METHODS: We generated tissue-specific loss- and gain-of-function models for eNOS by using cell-specific Cre-induced gene inactivation or reactivation. We created 2 founder lines carrying a floxed eNOS (eNOSflox/flox) for Cre-inducible knockout (KO), and gene construct with an inactivated floxed/inverted exon (eNOSinv/inv) for a Cre-inducible knock-in (KI), which respectively allow targeted deletion or reactivation of eNOS in erythroid cells (RBC eNOS KO or RBC eNOS KI mice) or in ECs (EC eNOS KO or EC eNOS KI mice). Vascular function, hemodynamics, and nitric oxide metabolism were compared ex vivo and in vivo. RESULTS: The EC eNOS KOs exhibited significantly impaired aortic dilatory responses to acetylcholine, loss of flow-mediated dilation, and increased systolic and diastolic blood pressure. RBC eNOS KO mice showed no alterations in acetylcholine-mediated dilation or flow-mediated dilation but were hypertensive. Treatment with the nitric oxide synthase inhibitor Nγ-nitro-l-arginine methyl ester further increased blood pressure in RBC eNOS KOs, demonstrating that eNOS in both ECs and RBCs contributes to blood pressure regulation. Although both EC eNOS KOs and RBC eNOS KOs had lower plasma nitrite and nitrate concentrations, the levels of bound NO in RBCs were lower in RBC eNOS KOs than in EC eNOS KOs. Reactivation of eNOS in ECs or RBCs rescues the hypertensive phenotype of the eNOSinv/inv mice, whereas the levels of bound NO were restored only in RBC eNOS KI mice. CONCLUSIONS: These data reveal that eNOS in ECs and RBCs contribute independently to blood pressure homeostasis.


Assuntos
Pressão Sanguínea/fisiologia , Células Endoteliais/metabolismo , Eritrócitos/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Acetilcolina/farmacologia , Animais , Doenças da Aorta/tratamento farmacológico , Arginina/análogos & derivados , Arginina/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Contagem de Eritrócitos/métodos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Camundongos
7.
Circ Res ; 124(10): 1433-1447, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30916618

RESUMO

RATIONALE: Immediate changes in the ECM (extracellular matrix) microenvironment occur after myocardial ischemia and reperfusion (I/R) injury. OBJECTIVE: Aim of this study was to unravel the role of the early hyaluronan (HA)-rich ECM after I/R. METHODS AND RESULTS: Genetic deletion of Has2 and Has1 was used in a murine model of cardiac I/R. Chemical exchange saturation transfer imaging was adapted to image cardiac ECM post-I/R. Of note, the cardiac chemical exchange saturation transfer signal was severely suppressed by Has2 deletion and pharmacological inhibition of HA synthesis 24 hours after I/R. Has2 KO ( Has2 deficient) mice showed impaired hemodynamic function suggesting a protective role for endogenous HA synthesis. In contrast to Has2 deficiency, Has1-deficient mice developed no specific phenotype compared with control post-I/R. Importantly, in Has2 KO mice, cardiac macrophages were diminished after I/R as detected by 19F MRI (magnetic resonance imaging) of perfluorcarbon-labeled immune cells, Mac-2/Galectin-3 immunostaining, and FACS (fluorescence-activated cell sorting) analysis (CD45+CD11b+Ly6G-CD64+F4/80+cells). In contrast to macrophages, cardiac Ly6Chigh and Ly6Clow monocytes were unaffected post-I/R compared with control mice. Mechanistically, inhibition of HA synthesis led to increased macrophage apoptosis in vivo and in vitro. In addition, α-SMA (α-smooth muscle actin)-positive cells were reduced in the infarcted myocardium and in the border zone. In vitro, the myofibroblast response as measured by Acta2 mRNA expression was reduced by inhibition of HA synthesis and of CD44 signaling. Furthermore, Has2 KO fibroblasts were less able to contract collagen gels in vitro. The effects of HA/CD44 on fibroblasts and macrophages post-I/R might also affect intercellular cross talk because cardiac fibroblasts were activated by monocyte/macrophages and, in turn, protected macrophages from apoptosis. CONCLUSIONS: Increased HA synthesis contributes to postinfarct healing by supporting macrophage survival and by promoting the myofibroblast response. Additionally, imaging of cardiac HA by chemical exchange saturation transfer post-I/R might have translational value.


Assuntos
Matriz Extracelular/fisiologia , Hialuronan Sintases/deficiência , Ácido Hialurônico/biossíntese , Macrófagos/fisiologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Cicatrização/fisiologia , Actinas/metabolismo , Animais , Apoptose , Comunicação Celular/fisiologia , Sobrevivência Celular , Microambiente Celular/fisiologia , Matriz Extracelular/metabolismo , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/antagonistas & inibidores , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Monócitos/fisiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/citologia , Miofibroblastos/metabolismo , Miofibroblastos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...