Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Radiother Oncol ; 191: 110059, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135186

RESUMO

BACKGROUND AND PURPOSE: Due to the high intrinsic radioresistance of pancreatic ductal adenocarcinoma (PDAC), radiotherapy (RT) is only beneficial in 30% of patients. Therefore, this study aimed to identify targets to improve the efficacy of RT in PDAC. MATERIALS AND METHODS: Alamar Blue proliferation and colony formation assay (CFA) were used to determine the radioresponse of a cohort of 38 murine PDAC cell lines. A gene set enrichment analysis was performed to reveal differentially expressed pathways. CFA, cell cycle distribution, γH2AX FACS analysis, and Caspase 3/7 SYTOX assay were used to examine the effect of a combination treatment using KIRA8 as an IRE1α-inhibitor and Ceapin-A7 as an inhibitor against ATF6. RESULTS: The unfolded protein response (UPR) was identified as a pathway highly expressed in radioresistant cell lines. Using the IRE1α-inhibitor KIRA8 or the ATF6-inhibitor Ceapin-A7 in combination with radiation, a radiosensitizing effect was observed in radioresistant cell lines, but no substantial alteration of the radioresponse in radiosensitive cell lines. Mechanistically, increased apoptosis by KIRA8 in combination with radiation and a cell cycle arrest in the G1 phase after ATF6 inhibition and radiation have been observed in radioresistant cell lines. CONCLUSION: So, our data show evidence that the UPR is involved in radioresistance of PDAC. Increased apoptosis and a G1 cell cycle arrest seem to be responsible for the radiosensitizing effect of UPR inhibition. These findings are supportive for developing novel combination treatment concepts in PDAC to overcome radioresistance.


Assuntos
Benzenossulfonamidas , Carcinoma Ductal Pancreático , Naftalenos , Neoplasias Pancreáticas , Radiossensibilizantes , Humanos , Animais , Camundongos , Endorribonucleases/genética , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Linhagem Celular Tumoral , Neoplasias Pancreáticas/radioterapia , Carcinoma Ductal Pancreático/radioterapia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Resposta a Proteínas não Dobradas , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Apoptose , Proliferação de Células
3.
Nat Commun ; 14(1): 1201, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882420

RESUMO

SNAIL is a key transcriptional regulator in embryonic development and cancer. Its effects in physiology and disease are believed to be linked to its role as a master regulator of epithelial-to-mesenchymal transition (EMT). Here, we report EMT-independent oncogenic SNAIL functions in cancer. Using genetic models, we systematically interrogated SNAIL effects in various oncogenic backgrounds and tissue types. SNAIL-related phenotypes displayed remarkable tissue- and genetic context-dependencies, ranging from protective effects as observed in KRAS- or WNT-driven intestinal cancers, to dramatic acceleration of tumorigenesis, as shown in KRAS-induced pancreatic cancer. Unexpectedly, SNAIL-driven oncogenesis was not associated with E-cadherin downregulation or induction of an overt EMT program. Instead, we show that SNAIL induces bypass of senescence and cell cycle progression through p16INK4A-independent inactivation of the Retinoblastoma (RB)-restriction checkpoint. Collectively, our work identifies non-canonical EMT-independent functions of SNAIL and unravel its complex context-dependent role in cancer.


Assuntos
Neoplasias Pancreáticas , Fatores de Transcrição da Família Snail , Carcinogênese , Transformação Celular Neoplásica , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras) , Animais , Fatores de Transcrição da Família Snail/genética
4.
Cell Death Dis ; 14(1): 3, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596765

RESUMO

The emergence of resistance to systemic therapies in pancreatic ductal adenocarcinoma (PDAC) is still a major obstacle in clinical practice. Both, constitutive and inducible NF-κB activity are known as key players in this context. To identify differentially expressed and TRAIL resistance mediating NF-κB target genes, TRAIL sensitive and resistant PDAC cell lines were analyzed by transcriptome assays. In this context, A20 was identified as an NF-κB/RelA inducible target gene. Translational PDAC tissue analysis confirmed the correlation of elevated A20 protein expression with activated RelA expression in PDAC patients. In in vitro experiments, an elevated A20 expression is accompanied by a specific resistance toward TRAIL-mediated apoptosis but not to chemotherapeutic-induced cell death. This TRAIL resistance was attributed to A20´s E3-ligase activity-mediating Zink finger domain. Furthermore, the ubiquitin-binding scaffold protein p62 was identified as indispensable for the TRAIL-mediated apoptosis-inducing pathway affected by A20. The results of this study identify A20 as a possible therapeutic target to affect resistance to TRAIL-induced apoptosis in PDAC cells.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , NF-kappa B/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Apoptose , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Transcrição RelA/genética , Neoplasias Pancreáticas
5.
Cell Mol Life Sci ; 80(1): 12, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36534167

RESUMO

Targeting KRAS downstream signaling remains an important therapeutic approach in pancreatic cancer. We used primary pancreatic ductal epithelial cells and mouse models allowing the conditional expression of oncogenic KrasG12D, to investigate KRAS signaling integrators. We observed that the AP1 family member FRA1 is tightly linked to the KRAS signal and expressed in pre-malignant lesions and the basal-like subtype of pancreatic cancer. However, genetic-loss-of-function experiments revealed that FRA1 is dispensable for KrasG12D-induced pancreatic cancer development in mice. Using FRA1 gain- and loss-of-function models in an unbiased drug screen, we observed that FRA1 is a modulator of the responsiveness of pancreatic cancer to inhibitors of the RAF-MEK-ERK cascade. Mechanistically, context-dependent FRA1-associated adaptive rewiring of oncogenic ERK signaling was observed and correlated with sensitivity to inhibitors of canonical KRAS signaling. Furthermore, pharmacological-induced degradation of FRA1 synergizes with MEK inhibitors. Our studies establish FRA1 as a part of the molecular machinery controlling sensitivity to MAPK cascade inhibition allowing the development of mechanism-based therapies.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-fos , Animais , Camundongos , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Proto-Oncogênicas c-fos/metabolismo , Neoplasias Pancreáticas
6.
JCI Insight ; 7(10)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35439169

RESUMO

Systemic therapies for pancreatic ductal adenocarcinoma (PDAC) remain unsatisfactory. Clinical prognosis is particularly poor for tumor subtypes with activating aberrations in the MYC pathway, creating an urgent need for novel therapeutic targets. To unbiasedly find MYC-associated epigenetic dependencies, we conducted a drug screen in pancreatic cancer cell lines. Here, we found that protein arginine N-methyltransferase 5 (PRMT5) inhibitors triggered an MYC-associated dependency. In human and murine PDACs, a robust connection of MYC and PRMT5 was detected. By the use of gain- and loss-of-function models, we confirmed the increased efficacy of PRMT5 inhibitors in MYC-deregulated PDACs. Although inhibition of PRMT5 was inducing DNA damage and arresting PDAC cells in the G2/M phase of the cell cycle, apoptotic cell death was executed predominantly in cells with high MYC expression. Experiments in primary patient-derived PDAC models demonstrated the existence of a highly PRMT5 inhibitor-sensitive subtype. Our work suggests developing PRMT5 inhibitor-based therapies for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Detecção Precoce de Câncer , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Epigênese Genética , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias Pancreáticas
7.
Front Oncol ; 12: 826617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402225

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers with a poor response to current treatment regimens. The multifunctional DNA repair-redox signaling protein Ref-1 has a redox signaling function that activates several transcriptional factors (TFs) including NF-κB (RelA), STAT3, AP-1. These have been implicated in signaling in PDAC and associated with cancer progression and therapy resistance. Numerous studies have shown a role for RelA in PDAC inflammatory responses and therapy resistance, little is known as to how these inflammatory responses are modulated through Ref-1 redox signaling pathways during pancreatic pathogenesis. RelA and STAT3 are two major targets of Ref-1 and are important in PDAC pathogenesis. To decipher the mechanistic role of RelA in response to Ref-1 inhibition, we used PDAC cells (KC3590) from a genetically engineered Kras G12D-driven mouse model that also is functionally deficient for RelA (Parent/Vector) or KC3590 cells with fully functional RelA added back (clone 13; C13). We demonstrated that RelA deficient cells are more resistant to Ref-1 redox inhibitors APX3330, APX2009, and APX2014, and their sensitivity is restored in the RelA proficient cells. Knockdown of STAT3 did not change cellular sensitivity to Ref-1 redox inhibitors in either cell type. Gene expression analysis demonstrated that Ref-1 inhibitors significantly decreased IL-8, FOSB, and c-Jun when functional RelA is present. We also demonstrated that PRDX1, a known Ref-1 redox modulator, contributes to Ref-1 inhibitor cellular response. Knockdown of PRDX1 when functional RelA is present resulted in dramatically increased PDAC killing in response to Ref-1 inhibitors. The enhanced cell killing was not due to increased intracellular ROS production. Although Ref-1 inhibition decreased the NADP/NADPH ratio in the cells, the addition of PRDX1 knockdown did not further this redox imbalance. This data suggests that the mechanism of cell killing following Ref-1 inhibition is at least partially mediated through RelA and not STAT3. Further imbalancing of the redox signaling through disruption of the PRDX1-Ref-1 interaction may have therapeutic implications. Our data further support a pivotal role of RelA in mediating Ref-1 redox signaling in PDAC cells with the Kras G12D genotype and provide novel therapeutic strategies to combat PDAC drug resistance.

9.
Nat Cancer ; 3(3): 318-336, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35122074

RESUMO

KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) is highly immunosuppressive and resistant to targeted and immunotherapies. Among the different PDAC subtypes, basal-like mesenchymal PDAC, which is driven by allelic imbalance, increased gene dosage and subsequent high expression levels of oncogenic KRAS, shows the most aggressive phenotype and strongest therapy resistance. In the present study, we performed a systematic high-throughput combination drug screen and identified a synergistic interaction between the MEK inhibitor trametinib and the multi-kinase inhibitor nintedanib, which targets KRAS-directed oncogenic signaling in mesenchymal PDAC. This combination treatment induces cell-cycle arrest and cell death, and initiates a context-dependent remodeling of the immunosuppressive cancer cell secretome. Using a combination of single-cell RNA-sequencing, CRISPR screens and immunophenotyping, we show that this combination therapy promotes intratumor infiltration of cytotoxic and effector T cells, which sensitizes mesenchymal PDAC to PD-L1 immune checkpoint inhibition. Overall, our results open new avenues to target this aggressive and therapy-refractory mesenchymal PDAC subtype.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias Pancreáticas/tratamento farmacológico , Microambiente Tumoral
10.
Bioorg Chem ; 119: 105505, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34838332

RESUMO

Targeted protein degradation offers new opportunities to inactivate cancer drivers and has successfully entered the clinic. Ways to induce selective protein degradation include proteolysis targeting chimera (PROTAC) technology and immunomodulatory (IMiDs) / next-generation Cereblon (CRBN) E3 ligase modulating drugs (CELMoDs). Here, we aimed to develop a MYC PROTAC based on the MYC-MAX dimerization inhibitor 10058-F4 derivative 28RH and Thalidomide, called MDEG-541. We show that a subgroup of gastrointestinal cancer cell lines and primary patient-derived organoids are MDEG-541 sensitive. Although MYC expression was regulated in a CRBN-, proteasome- and ubiquitin-dependent manner, we provide evidence that MDEG-541 induced the degradation of CRBN neosubstrates, including G1 to S phase transition 1/2 (GSPT1/2) and the Polo-like kinase 1 (PLK1). In sum, we have established a CRBN-dependent degrader of relevant cancer targets with activity in gastrointestinal cancers.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Gastrointestinais/tratamento farmacológico , Talidomida/farmacologia , Tiazóis/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Talidomida/síntese química , Talidomida/química , Tiazóis/síntese química , Tiazóis/química , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases/metabolismo
11.
Pancreatology ; 21(5): 912-919, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33824054

RESUMO

BACKGROUND: Oncogenic Kras initiates and drives carcinogenesis in the pancreas by complex signaling networks, including activation of the NFκB pathway. Although recent evidence has shown that oncogenic gains in Nfκb2 collaborate with Kras in the carcinogenesis, no data at the level of genetics for the contribution of Nfκb2 is available so far. METHODS: We used Nfkb2 knock-out mice to decipher the role of the gene in Kras-driven carcinogenesis in vivo. RESULTS: We show that the Nfkb2 gene is needed for cancer initiation and progression in KrasG12D-driven models and this requirement of Nfkb2 is mechanistically connected to proliferative pathways. In contrast, Nfκb2 is dispensable in aggressive pancreatic ductal adenocarcinoma (PDAC) models relying on the simultaneous expression of the Kras oncogene and the mutated tumor suppressor p53. CONCLUSIONS: Our data add to the understanding of context-dependent requirements of oncogenic Kras signaling during pancreatic carcinogenesis.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinogênese/genética , Carcinoma Ductal Pancreático/genética , Genes ras , Camundongos , Pâncreas , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
12.
Br J Cancer ; 124(3): 531-538, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33071285

RESUMO

An urgent medical need to develop novel treatment strategies for patients with pancreatic ductal adenocarcinoma (PDAC) exists. However, despite various efforts in the histopathological and molecular subtyping of PDAC, novel targeted or specific therapies have not been established. Posttranslational modifications (PTMs) with ubiquitin-like proteins, including small ubiquitin-like modifiers (SUMOs), mediate numerous processes that can contribute to the fitness and survival of cancer cells. The contribution of SUMOylation to transcriptional control, DNA repair pathways, mitotic progression, and oncogenic signalling has been described. Here we review functions of the SUMO pathway in PDAC, with a special focus on its connection to an aggressive subtype of the disease characterised by high MYC activity, and discuss SUMOylation inhibitors under development for precise PDAC therapies.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Carcinoma Ductal Pancreático/patologia , Sobrevivência Celular/fisiologia , Cisteína Endopeptidases/efeitos dos fármacos , Cisteína Endopeptidases/metabolismo , Reparo do DNA/fisiologia , Inibidores Enzimáticos/farmacologia , Humanos , Mitose/fisiologia , Neoplasias Pancreáticas/patologia , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteína da Leucemia Promielocítica/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteína SUMO-1/antagonistas & inibidores , Proteína SUMO-1/metabolismo , Transdução de Sinais/fisiologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/antagonistas & inibidores , Sumoilação/efeitos dos fármacos , Mutações Sintéticas Letais , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinas/antagonistas & inibidores , Ubiquitinas/metabolismo
13.
Mol Oncol ; 14(12): 3048-3064, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33099868

RESUMO

The myelocytomatosis oncogene (MYC) is an important driver in a subtype of pancreatic ductal adenocarcinoma (PDAC). However, MYC remains a challenging therapeutic target; therefore, identifying druggable synthetic lethal interactions in MYC-active PDAC may lead to novel precise therapies. First, to identify networks with hyperactive MYC, we profiled transcriptomes of established human cell lines, murine primary PDAC cell lines, and accessed publicly available repositories to analyze transcriptomes of primary human PDAC. Networks active in MYC-hyperactive subtypes were analyzed by gene set enrichment analysis. Next, we performed an unbiased pharmacological screen to define MYC-associated vulnerabilities. Hits were validated by analysis of drug response repositories and genetic gain- and loss-of-function experiments. In these experiments, we discovered that the proteasome inhibitor bortezomib triggers a MYC-associated vulnerability. In addition, by integrating publicly available data, we found the unfolded protein response as a signature connected to MYC. Furthermore, increased sensitivity of MYC-hyperactive PDACs to bortezomib was validated in genetically modified PDAC cells. In sum, we provide evidence that perturbing the ubiquitin-proteasome system (UPS) might be an option to target MYC-hyperactive PDAC cells. Our data provide the rationale to further develop precise targeting of the UPS as a subtype-specific therapeutic approach.


Assuntos
Neoplasias Pancreáticas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ubiquitina/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Antineoplásicos/análise , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Bortezomib/farmacologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Pancreáticas/patologia , Proteostase/efeitos dos fármacos
14.
Gut ; 69(8): 1472-1482, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32001555

RESUMO

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) still carries a dismal prognosis with an overall 5-year survival rate of 9%. Conventional combination chemotherapies are a clear advance in the treatment of PDAC; however, subtypes of the disease exist, which exhibit extensive resistance to such therapies. Genomic MYC amplifications represent a distinct subset of PDAC with an aggressive tumour biology. It is clear that hyperactivation of MYC generates dependencies that can be exploited therapeutically. The aim of the study was to find and to target MYC-associated dependencies. DESIGN: We analysed human PDAC gene expression datasets. Results were corroborated by the analysis of the small ubiquitin-like modifier (SUMO) pathway in a large PDAC cohort using immunohistochemistry. A SUMO inhibitor was used and characterised using human and murine two-dimensional, organoid and in vivo models of PDAC. RESULTS: We observed that MYC is connected to the SUMOylation machinery in PDAC. Components of the SUMO pathway characterise a PDAC subtype with a dismal prognosis and we provide evidence that hyperactivation of MYC is connected to an increased sensitivity to pharmacological SUMO inhibition. CONCLUSION: SUMO inhibitor-based therapies should be further developed for an aggressive PDAC subtype.


Assuntos
Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Idoso , Animais , Apoptose , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Inibidores Enzimáticos/farmacologia , Ésteres/farmacologia , Feminino , Amplificação de Genes , Expressão Gênica , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Transplante de Neoplasias , Organoides/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Prognóstico , Proteínas Proto-Oncogênicas c-myc/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Ácidos Sulfônicos , Sumoilação/efeitos dos fármacos , Sumoilação/genética , Transcriptoma/efeitos dos fármacos , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Enzimas Ativadoras de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitinas/genética , Ubiquitinas/metabolismo
15.
Br J Cancer ; 118(3): 366-377, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29384525

RESUMO

BACKGROUND: Although the mechanistic target of rapamycin (MTOR) kinase, included in the mTORC1 and mTORC2 signalling hubs, has been demonstrated to be active in a significant fraction of patients with pancreatic ductal adenocarcinoma (PDAC), the value of the kinase as a therapeutic target needs further clarification. METHODS: We used Mtor floxed mice to analyse the function of the kinase in context of the pancreas at the genetic level. Using a dual-recombinase system, which is based on the flippase-FRT (Flp-FRT) and Cre-loxP recombination technologies, we generated a novel cellular model, allowing the genetic analysis of MTOR functions in tumour maintenance. Cross-species validation and pharmacological intervention studies were used to recapitulate genetic data in human models, including primary human 3D PDAC cultures. RESULTS: Genetic deletion of the Mtor gene in the pancreas results in exocrine and endocrine insufficiency. In established murine PDAC cells, MTOR is linked to metabolic pathways and maintains the glucose uptake and growth. Importantly, blocking MTOR genetically as well as pharmacologically results in adaptive rewiring of oncogenic signalling with activation of canonical extracellular signal-regulated kinase and phosphoinositide 3-kinase-AKT pathways. We provide evidence that interfering with such adaptive signalling in murine and human PDAC models is important in a subgroup. CONCLUSIONS: Our data suggest developing dual MTORC1/TORC2 inhibitor-based therapies for subtype-specific intervention.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Sistema de Sinalização das MAP Quinases , Neoplasias Pancreáticas/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Animais , Antineoplásicos/farmacologia , Benzoxazóis/farmacologia , Bortezomib/farmacologia , Camptotecina/farmacologia , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Sobrevivência Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Camundongos , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores
16.
Small GTPases ; 9(6): 457-464, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27880072

RESUMO

EGFR signaling has a critical role in oncogenic KRAS-driven tumorigenesis of the pancreas, whereas it is dispensable in other organs. The complex signaling network engaged by oncogenic KRAS and its modulation by EGFR signaling, remains incompletely understood. In order to study early signaling events activated by oncogenic KRAS in the pancreas, we recently developed a novel model system based on murine primary pancreatic epithelial cells enabling the time-specific expression of mutant KrasG12D from its endogenous promoter. Here, we discuss our findings of a KrasG12D-induced autocrine EGFR loop, how this loop is integrated by the MYC oncogene, and point to possible translational implications.


Assuntos
Carcinogênese , Receptores ErbB/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Comunicação Autócrina , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...