Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 180: 107683, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574824

RESUMO

Hybridization and the consequent introgression of genomic elements is an important source of genetic diversity for biological lineages. This is particularly evident in young clades in which hybrid incompatibilities are still incomplete and mixing between species is more likely to occur. Drosophila paulistorum, a representative of the Neotropical Drosophila willistoni subgroup, is a classic model of incipient speciation. The species is divided into six semispecies that show varying degrees of pre- and post-mating incompatibility with each other. In the present study, we investigate the mitochondrial evolutionary history of D. paulistorum and the willistoni subgroup. For that, we perform phylogenetic and comparative analyses of the complete mitochondrial genomes and draft nuclear assemblies of 25 Drosophila lines of the willistoni and saltans species groups. Our results show that the mitochondria of D. paulistorum are polyphyletic and form two non-sister clades that we name α and ß. Identification and analyses of nuclear mitochondrial insertions further reveal that the willistoni subgroup has an α-like mitochondrial ancestor and strongly suggest that both the α and ß mitochondria of D. paulistorum were acquired through introgression from unknown fly lineages of the willistoni subgroup. We also uncover multiple mitochondrial introgressions across D. paulistorum semispecies and generate novel insight into the evolution of the species.


Assuntos
Drosophila , Hibridização Genética , Animais , Drosophila/genética , Filogenia , Hibridização de Ácido Nucleico
2.
PLoS Pathog ; 17(9): e1009539, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34529715

RESUMO

Tsetse flies (Glossina spp.) house a population-dependent assortment of microorganisms that can include pathogenic African trypanosomes and maternally transmitted endosymbiotic bacteria, the latter of which mediate numerous aspects of their host's metabolic, reproductive, and immune physiologies. One of these endosymbionts, Spiroplasma, was recently discovered to reside within multiple tissues of field captured and laboratory colonized tsetse flies grouped in the Palpalis subgenera. In various arthropods, Spiroplasma induces reproductive abnormalities and pathogen protective phenotypes. In tsetse, Spiroplasma infections also induce a protective phenotype by enhancing the fly's resistance to infection with trypanosomes. However, the potential impact of Spiroplasma on tsetse's viviparous reproductive physiology remains unknown. Herein we employed high-throughput RNA sequencing and laboratory-based functional assays to better characterize the association between Spiroplasma and the metabolic and reproductive physiologies of G. fuscipes fuscipes (Gff), a prominent vector of human disease. Using field-captured Gff, we discovered that Spiroplasma infection induces changes of sex-biased gene expression in reproductive tissues that may be critical for tsetse's reproductive fitness. Using a Gff lab line composed of individuals heterogeneously infected with Spiroplasma, we observed that the bacterium and tsetse host compete for finite nutrients, which negatively impact female fecundity by increasing the length of intrauterine larval development. Additionally, we found that when males are infected with Spiroplasma, the motility of their sperm is compromised following transfer to the female spermatheca. As such, Spiroplasma infections appear to adversely impact male reproductive fitness by decreasing the competitiveness of their sperm. Finally, we determined that the bacterium is maternally transmitted to intrauterine larva at a high frequency, while paternal transmission was also noted in a small number of matings. Taken together, our findings indicate that Spiroplasma exerts a negative impact on tsetse fecundity, an outcome that could be exploited for reducing tsetse population size and thus disease transmission.


Assuntos
Insetos Vetores/microbiologia , Insetos Vetores/fisiologia , Spiroplasma , Simbiose/fisiologia , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/fisiologia , Animais , Feminino , Masculino
3.
Genome Biol Evol ; 12(5): 720-735, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32163151

RESUMO

The application of Wolbachia in insect pest and vector control requires the establishment of genotypically stable host associations. The cytoplasmic incompatibility (CI) inducing Wolbachia strain wCer2 naturally occurs in the cherry fruit fly Rhagoletis cerasi as co-infection with other strains and was transferred to other fruit fly species by embryonic microinjections. We obtained wCer2 genome data from its native and three novel hosts, Drosophila simulans, Drosophila melanogaster, and Ceratitis capitata and assessed its genome stability, characteristics, and CI factor (cif) genes. De novo assembly was successful from Wolbachia cell-enriched singly infected D. simulans embryos, with minimal host and other bacterial genome traces. The low yield of Wolbachia sequence reads from total genomic extracts of one multiply infected R. cerasi pupa and one singly infected C. capitata adult limited de novo assemblies but was sufficient for comparative analyses. Across hosts wCer2 was stable in genome synteny and content. Polymorphic nucleotide sites were found in wCer2 of each host; however, only one nucleotide was different between R. cerasi and C. capitata, and none between replicated D. simulans lines. The wCer2 genome is highly similar to wAu (D. simulans), wMel (D. melanogaster), and wRec (Drosophila recens). In contrast to wMel and wRec (each with one cif gene pair) and wAu (without any cif genes), wCer2 has three pairs of Type I cif genes, and one Type V cifB gene without a cifA complement. This may explain previously reported CI patterns of wCer2, including incomplete rescue of its own CI modification in three novel host species.


Assuntos
Proteínas de Bactérias/genética , Citoplasma/genética , Drosophila/microbiologia , Instabilidade Genômica , Especificidade de Hospedeiro , Simbiose , Wolbachia/genética , Animais , Evolução Molecular , Interações Hospedeiro-Patógeno , Fenótipo , Wolbachia/fisiologia
4.
PLoS Negl Trop Dis ; 13(8): e0007340, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31369548

RESUMO

Tsetse flies (Glossina spp.) are vectors of parasitic trypanosomes, which cause human (HAT) and animal African trypanosomiasis (AAT) in sub-Saharan Africa. In Uganda, Glossina fuscipes fuscipes (Gff) is the main vector of HAT, where it transmits Gambiense disease in the northwest and Rhodesiense disease in central, southeast and western regions. Endosymbionts can influence transmission efficiency of parasites through their insect vectors via conferring a protective effect against the parasite. It is known that the bacterium Spiroplasma is capable of protecting its Drosophila host from infection with a parasitic nematode. This endosymbiont can also impact its host's population structure via altering host reproductive traits. Here, we used field collections across 26 different Gff sampling sites in northern and western Uganda to investigate the association of Spiroplasma with geographic origin, seasonal conditions, Gff genetic background and sex, and trypanosome infection status. We also investigated the influence of Spiroplasma on Gff vector competence to trypanosome infections under laboratory conditions. Generalized linear models (GLM) showed that Spiroplasma probability was correlated with the geographic origin of Gff host and with the season of collection, with higher prevalence found in flies within the Albert Nile (0.42 vs 0.16) and Achwa River (0.36 vs 0.08) watersheds and with higher prevalence detected in flies collected in the intermediate than wet season. In contrast, there was no significant correlation of Spiroplasma prevalence with Gff host genetic background or sex once geographic origin was accounted for in generalized linear models. Additionally, we found a potential negative correlation of Spiroplasma with trypanosome infection, with only 2% of Spiroplasma infected flies harboring trypanosome co-infections. We also found that in a laboratory line of Gff, parasitic trypanosomes are less likely to colonize the midgut in individuals that harbor Spiroplasma infection. These results indicate that Spiroplasma infections in tsetse may be maintained by not only maternal but also via horizontal transmission routes, and Spiroplasma infections may also have important effects on trypanosome transmission efficiency of the host tsetse. Potential functional effects of Spiroplasma infection in Gff could have impacts on vector control approaches to reduce trypanosome infections.


Assuntos
Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Insetos Vetores/microbiologia , Spiroplasma/patogenicidade , Moscas Tsé-Tsé/microbiologia , Animais , Coinfecção , DNA Ribossômico/genética , Feminino , Insetos Vetores/parasitologia , Masculino , Prevalência , Spiroplasma/genética , Spiroplasma/fisiologia , Simbiose , Trypanosoma , Moscas Tsé-Tsé/parasitologia , Uganda , Wolbachia
5.
BMC Genomics ; 20(1): 465, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31174466

RESUMO

BACKGROUND: The Neotropical fruit fly Drosophila paulistorum (Diptera: Drosophilidae) is a species complex in statu nascendi comprising six reproductively isolated semispecies, each harboring mutualistic Wolbachia strains. Although wild type flies of each semispecies are isolated from the others by both pre- and postmating incompatibilities, mating between semispecies and successful offspring development can be achieved once flies are treated with antibiotics to reduce Wolbachia titer. Here we use RNA-seq to study the impact of Wolbachia on D. paulistorum and investigate the hypothesis that the symbiont may play a role in host speciation. For that goal, we analyze samples of heads and abdomens of both sexes of the Amazonian, Centro American and Orinocan semispecies of D. paulistorum. RESULTS: We identify between 175 and 1192 differentially expressed genes associated with a variety of biological processes that respond either globally or according to tissue, sex or condition in the three semispecies. Some of the functions associated with differentially expressed genes are known to be affected by Wolbachia in other species, such as metabolism and immunity, whereas others represent putative novel phenotypes involving muscular functions, pheromone signaling, and visual perception. CONCLUSIONS: Our results show that Wolbachia affect a large number of biological functions in D. paulistorum, particularly when present in high titer. We suggest that the significant metabolic impact of the infection on the host may cause several of the other putative and observed phenotypes. We also speculate that the observed differential expression of genes associated with chemical communication and reproduction may be associated with the emergence of pre- and postmating barriers between semispecies, which supports a role for Wolbachia in the speciation of D. paulistorum.


Assuntos
Drosophila/genética , Drosophila/microbiologia , Especiação Genética , Simbiose , Wolbachia/fisiologia , Aminoácidos/metabolismo , Animais , Metabolismo dos Carboidratos/genética , Drosophila/metabolismo , Feminino , Imunidade/genética , Metabolismo dos Lipídeos/genética , Masculino , Músculos/metabolismo , Feromônios/metabolismo , Proteólise , RNA-Seq , Reprodução/genética , Transcriptoma
6.
Behav Genet ; 49(1): 83-98, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30456532

RESUMO

Microbial symbionts are ubiquitous associates of living organisms but their role in mediating reproductive isolation (RI) remains controversial. We addressed this knowledge gap by employing the Drosophila paulistorum-Wolbachia model system. Semispecies in the D. paulistorum species complex exhibit strong RI between each other and knockdown of obligate mutualistic Wolbachia bacteria in female D. paulistorum flies triggers loss of assortative mating behavior against males carrying incompatible Wolbachia strains. Here we set out to determine whether de novo RI can be introduced by Wolbachia-knockdown in D. paulistorum males. We show that Wolbachia-knockdown D. paulistorum males (i) are rejected as mates by wild type females, (ii) express altered sexual pheromone profiles, and (iii) are devoid of the endosymbiont in pheromone producing cells. Our findings suggest that changes in Wolbachia titer and tissue tropism can induce de novo premating isolation by directly or indirectly modulating sexual behavior of their native D. paulistorum hosts.


Assuntos
Drosophila/microbiologia , Reprodução/fisiologia , Simbiose/genética , Animais , Comportamento Animal , Evolução Biológica , Proteínas de Drosophila/metabolismo , Feminino , Masculino , Isolamento Reprodutivo , Atrativos Sexuais/metabolismo , Atrativos Sexuais/fisiologia , Comportamento Sexual Animal/fisiologia , Especificidade da Espécie , Wolbachia/fisiologia
7.
BMC Microbiol ; 18(Suppl 1): 179, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470182

RESUMO

With the absence of effective prophylactic vaccines and drugs against African trypanosomosis, control of this group of zoonotic neglected tropical diseases depends the control of the tsetse fly vector. When applied in an area-wide insect pest management approach, the sterile insect technique (SIT) is effective in eliminating single tsetse species from isolated populations. The need to enhance the effectiveness of SIT led to the concept of investigating tsetse-trypanosome interactions by a consortium of researchers in a five-year (2013-2018) Coordinated Research Project (CRP) organized by the Joint Division of FAO/IAEA. The goal of this CRP was to elucidate tsetse-symbiome-pathogen molecular interactions to improve SIT and SIT-compatible interventions for trypanosomoses control by enhancing vector refractoriness. This would allow extension of SIT into areas with potential disease transmission. This paper highlights the CRP's major achievements and discusses the science-based perspectives for successful mitigation or eradication of African trypanosomosis.


Assuntos
Insetos Vetores/fisiologia , Simbiose/genética , Moscas Tsé-Tsé/parasitologia , Animais , Feminino , Controle de Insetos/métodos , Controle de Insetos/organização & administração , Insetos Vetores/parasitologia , Microbiota , Trypanosoma/genética , Tripanossomíase Africana/prevenção & controle , Tripanossomíase Africana/transmissão , Moscas Tsé-Tsé/fisiologia
8.
BMC Microbiol ; 18(Suppl 1): 140, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470185

RESUMO

BACKGROUND: In African tsetse flies Glossina, spp. detection of bacterial symbionts such as Wolbachia is challenging since their prevalence and distribution are patchy, and natural symbiont titers can range at levels far below detection limit of standard molecular techniques. Reliable estimation of symbiont infection frequency, especially with regard to interrelations between symbionts and their potential impact on host biology, is of pivotal interest in the context of future applications for the control and eradication of Glossina-vectored African trypanosomosis. The presence or absence of symbionts is routinely screened with endpoint polymerase chain reaction (PCR), which has numerous advantages, but reaches its limits, when detecting infections at natural low titer. To not only determine presence of native tsetse symbionts but also to localize them to specific host tissues, fluorescence in situ hybridization (FISH) can be applied. However, classic FISH assays may not detect low-titer infections due to limitations in sensitivity. RESULTS: We have compared classic endpoint PCR with high-sensitivity blot-PCR. We demonstrate that the latter technique allows for clear detection of low-titer Wolbachia in the morsitans and palpalis groups while classic endpoint PCR does not. In order to localize Wolbachia in situ in high and low-titer Glossina species, we applied high-end Stellaris® rRNA-FISH. We show that with this high sensitivity method, even low amounts of Wolbachia can be traced in specific tissues. Furthermore, we highlight that more tissues and organs than previously recorded are infested with Wolbachia in subspecies of the morsitans and palpalis groups. CONCLUSIONS: Our results demonstrate that overall symbiont infection frequencies as well as the presence in specific host tissues may be underestimated when using low-sensitivity methods. To better understand the complex interrelation of tsetse flies and their native symbionts plus the pathogenic trypanosomes, it is important to consider application of a broader range of high-sensitivity detection tools.


Assuntos
Hibridização in Situ Fluorescente/métodos , Reação em Cadeia da Polimerase/métodos , Moscas Tsé-Tsé/microbiologia , Wolbachia/isolamento & purificação , Animais , Proteínas da Membrana Bacteriana Externa/genética , Feminino , Insetos Vetores/microbiologia , Limite de Detecção , Masculino , Sensibilidade e Especificidade , Simbiose , Wolbachia/genética
9.
Cell Microbiol ; 19(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27353950

RESUMO

Microbial symbionts are universal entities of all living organisms that can significantly affect host fitness traits in manifold ways but, even more fascinating, also their behaviour. Although better known from parasitic symbionts, we currently lack any cases where 'neurotrophic' symbionts have co-evolved mutualistic behavioural interactions from which both partners profit. By theory, most mutualistic associations have originated from ancestral parasitic ones during their long-term co-evolution towards a cost-benefit equilibrium. To manipulate host behaviour in a way where both partners benefit in a reciprocal manner, the symbiont has to target and remain restricted to defined host brain regions to minimize unnecessary fitness costs. By using the classic Drosophila paulistorum model system we demonstrate that (i) mutualistic Wolbachia are restricted to various Drosophila brain areas, (ii) form bacteriocyte-like structures within the brain, (iii) exhibit strictly lateral tropism, and (iv) finally propose that their selective neuronal infection affects host sexual behaviour adaptively.


Assuntos
Encéfalo/microbiologia , Drosophila/microbiologia , Simbiose , Wolbachia/isolamento & purificação , Wolbachia/fisiologia , Animais , Drosophila/fisiologia , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Comportamento Sexual Animal
10.
BMC Microbiol ; 14: 121, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24885505

RESUMO

BACKGROUND: Detecting intracellular bacterial symbionts can be challenging when they persist at very low densities. Wolbachia, a widespread bacterial endosymbiont of invertebrates, is particularly challenging. Although it persists at high titers in many species, in others its densities are far below the detection limit of classic end-point Polymerase Chain Reaction (PCR). These low-titer infections can be reliably detected by combining PCR with DNA hybridization, but less elaborate strategies based on end-point PCR alone have proven less sensitive or less general. RESULTS: We introduce a multicopy PCR target that allows fast and reliable detection of A-supergroup Wolbachia--even at low infection titers--with standard end-point PCR. The target is a multicopy motif (designated ARM: A-supergroup repeat motif) discovered in the genome of wMel (the Wolbachia in Drosophila melanogaster). ARM is found in at least seven other Wolbachia A-supergroup strains infecting various Drosophila, the wasp Muscidifurax and the tsetse fly Glossina. We demonstrate that end-point PCR targeting ARM can reliably detect both high- and low-titer Wolbachia infections in Drosophila, Glossina and interspecific hybrids. CONCLUSIONS: Simple end-point PCR of ARM facilitates detection of low-titer Wolbachia A-supergroup infections. Detecting these infections previously required more elaborate procedures. Our ARM target seems to be a general feature of Wolbachia A-supergroup genomes, unlike other multicopy markers such as insertion sequences (IS).


Assuntos
DNA Bacteriano/isolamento & purificação , Sequências Repetitivas Dispersas , Reação em Cadeia da Polimerase/métodos , Simbiose , Wolbachia/isolamento & purificação , Animais , DNA Bacteriano/genética , Drosophila/microbiologia , Drosophila/fisiologia , Himenópteros/microbiologia , Himenópteros/fisiologia , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/fisiologia , Wolbachia/fisiologia
11.
PLoS One ; 8(12): e82402, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376534

RESUMO

The common endosymbiotic Wolbachia bacteria influence arthropod hosts in multiple ways. They are mostly recognized for their manipulations of host reproduction, yet, more recent studies demonstrate that Wolbachia also impact host behavior, metabolic pathways and immunity. Besides their biological and evolutionary roles, Wolbachia are new potential biological control agents for pest and vector management. Importantly, Wolbachia-based control strategies require controlled symbiont transfer between host species and predictable outcomes of novel Wolbachia-host associations. Theoretically, this artificial horizontal transfer could inflict genetic changes within transferred Wolbachia populations. This could be facilitated through de novo mutations in the novel recipient host or changes of haplotype frequencies of polymorphic Wolbachia populations when transferred from donor to recipient hosts. Here we show that Wolbachia resident in the European cherry fruit fly, Rhagoletis cerasi, exhibit ancestral and cryptic sequence polymorphism in three symbiont genes, which are exposed upon microinjection into the new hosts Drosophila simulans and Ceratitis capitata. Our analyses of Wolbachia in microinjected D. simulans over 150 generations after microinjection uncovered infections with multiple Wolbachia strains in trans-infected lines that had previously been typed as single infections. This confirms the persistence of low-titer Wolbachia strains in microinjection experiments that had previously escaped standard detection techniques. Our study demonstrates that infections by multiple Wolbachia strains can shift in prevalence after artificial host transfer driven by either stochastic or selective processes. Trans-infection of Wolbachia can claim fitness costs in new hosts and we speculate that these costs may have driven the shifts of Wolbachia strains that we saw in our model system.


Assuntos
Ceratitis capitata/microbiologia , Drosophila/microbiologia , Técnicas de Transferência de Genes , Variação Genética , Especificidade de Hospedeiro , Wolbachia/genética , Aminoácidos/genética , Animais , Sequência de Bases , Códon de Terminação/genética , Sequência Conservada , Feminino , Frequência do Gene/genética , Genes Bacterianos , Dados de Sequência Molecular , Nucleotídeos/genética , Ovário/microbiologia , Polimorfismo de Nucleotídeo Único/genética , Sintenia/genética
12.
PLoS One ; 8(4): e61150, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23613801

RESUMO

The vertically transmitted endosymbionts (Sodalis glossinidius and Wigglesworthia glossinidia) of the tsetse fly (Diptera: Glossinidae) are known to supplement dietary deficiencies and modulate the reproductive fitness and the defense system of the fly. Some tsetse fly species are also infected with the bacterium, Wolbachia and with the Glossina hytrosavirus (GpSGHV). Laboratory-bred G. pallidipes exhibit chronic asymptomatic and acute symptomatic GpSGHV infection, with the former being the most common in these colonies. However, under as yet undefined conditions, the asymptomatic state can convert to the symptomatic state, leading to detectable salivary gland hypertrophy (SGH(+)) syndrome. In this study, we investigated the interplay between the bacterial symbiome and GpSGHV during development of G. pallidipes by knocking down the symbionts with antibiotic. Intrahaemocoelic injection of GpSGHV led to high virus titre (10(9) virus copies), but was not accompanied by either the onset of detectable SGH(+), or release of detectable virus particles into the blood meals during feeding events. When the F1 generations of GpSGHV-challenged mothers were dissected within 24 h post-eclosion, SGH(+) was observed to increase from 4.5% in the first larviposition cycle to >95% in the fourth cycle. Despite being sterile, these F1 SGH(+) progeny mated readily. Removal of the tsetse symbiome, however, suppressed transgenerational transfer of the virus via milk secretions and blocked the ability of GpSGHV to infect salivary glands of the F1 progeny. Whereas GpSGHV infects and replicates in salivary glands of developing pupa, the virus is unable to induce SGH(+) within fully differentiated adult salivary glands. The F1 SGH(+) adults are responsible for the GpSGHV-induced colony collapse in tsetse factories. Our data suggest that GpSGHV has co-evolved with the tsetse symbiome and that the symbionts play key roles in the virus transmission from mother to progeny.


Assuntos
Bactérias Gram-Negativas/fisiologia , Vírus de Insetos/fisiologia , Simbiose , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/virologia , Ampicilina/farmacologia , Animais , Feminino , Vírus de Insetos/efeitos dos fármacos , Masculino , Replicação Viral/efeitos dos fármacos
13.
J Invertebr Pathol ; 112 Suppl: S104-15, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22516306

RESUMO

We demonstrate the high applicability of a novel VNTR-based (Variable-Number-Tandem-Repeat) molecular screening tool for fingerprinting Wolbachia-infections in tsetse flies. The VNTR-141 locus provides reliable and concise differentiation between Wolbachia strains deriving from Glossina morsitans morsitans, Glossina morsitans centralis, and Glossina brevipalpis. Moreover, we show that certain Wolbachia-infections in Glossina spp. are capable of escaping standard PCR screening methods by 'hiding' as low-titer infections below the detection threshold. By applying a highly sensitive PCR-blot technique to our Glossina specimen, we were able to enhance the symbiont detection limit substantially and, consequently, trace unequivocally Wolbachia-infections at high prevalence in laboratory-reared G. swynnertoni individuals. To our knowledge, Wolbachia-persistence was reported exclusively for field-collected samples, and at low prevalence only. Finally, we highlight the substantially higher Wolbachia titer levels found in hybrid Glossina compared to non-hybrid hosts and the possible impact of these titers on hybrid host fitness that potentially trigger incipient speciation in tsetse flies.


Assuntos
Repetições Minissatélites/genética , Moscas Tsé-Tsé/microbiologia , Wolbachia/genética , Animais , Impressões Digitais de DNA , Insetos Vetores/microbiologia , Reação em Cadeia da Polimerase/métodos , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...