Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 12: 826617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402225

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers with a poor response to current treatment regimens. The multifunctional DNA repair-redox signaling protein Ref-1 has a redox signaling function that activates several transcriptional factors (TFs) including NF-κB (RelA), STAT3, AP-1. These have been implicated in signaling in PDAC and associated with cancer progression and therapy resistance. Numerous studies have shown a role for RelA in PDAC inflammatory responses and therapy resistance, little is known as to how these inflammatory responses are modulated through Ref-1 redox signaling pathways during pancreatic pathogenesis. RelA and STAT3 are two major targets of Ref-1 and are important in PDAC pathogenesis. To decipher the mechanistic role of RelA in response to Ref-1 inhibition, we used PDAC cells (KC3590) from a genetically engineered Kras G12D-driven mouse model that also is functionally deficient for RelA (Parent/Vector) or KC3590 cells with fully functional RelA added back (clone 13; C13). We demonstrated that RelA deficient cells are more resistant to Ref-1 redox inhibitors APX3330, APX2009, and APX2014, and their sensitivity is restored in the RelA proficient cells. Knockdown of STAT3 did not change cellular sensitivity to Ref-1 redox inhibitors in either cell type. Gene expression analysis demonstrated that Ref-1 inhibitors significantly decreased IL-8, FOSB, and c-Jun when functional RelA is present. We also demonstrated that PRDX1, a known Ref-1 redox modulator, contributes to Ref-1 inhibitor cellular response. Knockdown of PRDX1 when functional RelA is present resulted in dramatically increased PDAC killing in response to Ref-1 inhibitors. The enhanced cell killing was not due to increased intracellular ROS production. Although Ref-1 inhibition decreased the NADP/NADPH ratio in the cells, the addition of PRDX1 knockdown did not further this redox imbalance. This data suggests that the mechanism of cell killing following Ref-1 inhibition is at least partially mediated through RelA and not STAT3. Further imbalancing of the redox signaling through disruption of the PRDX1-Ref-1 interaction may have therapeutic implications. Our data further support a pivotal role of RelA in mediating Ref-1 redox signaling in PDAC cells with the Kras G12D genotype and provide novel therapeutic strategies to combat PDAC drug resistance.

2.
Angew Chem Int Ed Engl ; 55(8): 2899-902, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26806106

RESUMO

Mechanophores, that is, molecules that show a defined response to force, are crucial building blocks of mechanoresponsive materials. The possibility of mechanically induced cycloreversion for a series of triazoles formed via strain-promoted azide-alkyne cycloaddition reactions was investigated by density functional theory calculations, and these triazoles were compared to the 1,4- and 1,5-regioisomers formed in the reaction of an azide with a terminal alkyne. We show that cycloreversion is in principal possible and that the pulling geometry is the most important parameter that determines the probability of cycloreversion. We further compared triazole stability to the mechanical stability of polymers that are frequently used as force transducers in mechanochemical experiments and identified DIBAC (azadibenzylcyclooctyne) as a promising mechanophore for future applications.

3.
Nat Med ; 21(10): 1163-71, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26390243

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers and shows resistance to any therapeutic strategy used. Here we tested small-molecule inhibitors targeting chromatin regulators as possible therapeutic agents in PDAC. We show that JQ1, an inhibitor of the bromodomain and extraterminal (BET) family of proteins, suppresses PDAC development in mice by inhibiting both MYC activity and inflammatory signals. The histone deacetylase (HDAC) inhibitor SAHA synergizes with JQ1 to augment cell death and more potently suppress advanced PDAC. Finally, using a CRISPR-Cas9-based method for gene editing directly in the mouse adult pancreas, we show that de-repression of p57 (also known as KIP2 or CDKN1C) upon combined BET and HDAC inhibition is required for the induction of combination therapy-induced cell death in PDAC. SAHA is approved for human use, and molecules similar to JQ1 are being tested in clinical trials. Thus, these studies identify a promising epigenetic-based therapeutic strategy that may be rapidly implemented in fatal human tumors.


Assuntos
Adenocarcinoma/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Epigênese Genética , Inibidores de Histona Desacetilases/uso terapêutico , Proteínas/antagonistas & inibidores , Adenocarcinoma/terapia , Animais , Carcinoma Ductal Pancreático/terapia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Camundongos
4.
J Phys Chem B ; 114(9): 3330-3, 2010 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-20163162

RESUMO

Charge sensors based on nanoscale field-effect transistors are a promising new tool to probe the dynamics of individual enzymes. However, it is currently unknown whether the electrostatic signals associated with biological activity exceed detection limits. We report calculations of electrostatic signatures of two representative enzymes, deoxyribonuclease I and T4 lysozyme. Our simulations reveal that substrate binding to deoxyribonuclease and internal dynamics of lysozyme are detectable at the single-molecule level using existing point-functionalized carbon nanotube sensors.


Assuntos
Desoxirribonuclease I/química , Muramidase/química , Simulação por Computador , Eletrólitos/química , Modelos Moleculares , Nanotubos de Carbono/química , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...