Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Interv Neuroradiol ; : 15910199231198275, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37670718

RESUMO

BACKGROUND: Virtual reality simulation training may improve the technical skills of interventional radiologists when establishing endovascular thrombectomy at limited-volume stroke centers. The aim of this study was to investigate whether the technical thrombectomy performance of interventional radiologists improved after a defined virtual reality simulator training period. As part of the quality surveillance of clinical practice, we also assessed patient outcomes and thrombectomy quality indicators at the participating centers. METHODS: Interventional radiologists and radiology residents from three thrombectomy-capable stroke centers participated in a five months thrombectomy skill-training curriculum on a virtual reality simulator. The simulator automatically registered procedure time, the number of predefined steps that were correctly executed, handling errors, contrast volume, fluoroscopy time, and radiation dose exposure. The design was a before-after study. Two simulated thrombectomy cases were used as pretest and posttest cases, while seven other cases were used for training. Utilizing the Norwegian Stroke Register, we investigated clinical results in thrombectomy during the study period. RESULTS: Nineteen interventional radiologists and radiology residents participated in the study. The improvement between pretest and posttest cases was statistically significant for all outcome measures in both simulated cases, except for the contrast volume used in one case. Clinical patient outcomes in all three centers were well within the recommendations from multi-society consensus guidelines. CONCLUSION: Performance on the virtual reality simulator improved after training. Virtual reality simulation may improve the learning curve for interventional radiologists in limited-volume thrombectomy centers. No correlation alleged, the clinical data indicates that the centers studied performed thrombectomy in accordance with guideline-recommended standards.

2.
Interv Neuroradiol ; 29(5): 577-582, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35832034

RESUMO

OBJECTIVE: Metric based virtual reality simulation training may enhance the capability of interventional neuroradiologists (INR) to perform endovascular thrombectomy. As pilot for a national simulation study we examined the feasibility and utility of simulated endovascular thrombectomy procedures on a virtual reality (VR) simulator. METHODS: Six INR and four residents participated in the thrombectomy skill training on a VR simulator (Mentice VIST 5G). Two different case-scenarios were defined as benchmark-cases, performed before and after VR simulator training. INR performing endovascular thrombectomy clinically were also asked to fill out a questionnaire analyzing their degree of expectation and general attitude towards VR simulator training. RESULTS: All participants improved in mean total procedure time for both benchmark-cases. Experts showed significant improvements in handling errors (case 2), a reduction in contrast volume used (case 1 and 2), and fluoroscopy time (case 1 and 2). Novices showed a significant improvement in steps finished (case 2), a reduction in fluoroscopy time (case 1), and radiation used (case 1). Both, before and after having performed simulation training the participating INR had a positive attitude towards VR simulation training. CONCLUSION: VR simulation training enhances the capability of INR to perform endovascular thrombectomy on the VR simulator. INR have generally a positive attitude towards VR simulation training. Whether the VR simulation training translates to enhanced clinical performance will be evaluated in the ongoing Norwegian national simulation study.


Assuntos
Treinamento por Simulação , Humanos , Simulação por Computador , Trombectomia , Fluoroscopia , Competência Clínica
3.
Water Res ; 214: 118199, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35220067

RESUMO

Groundwater contamination of geogenic arsenic (As) remains a global health threat, particularly in south-east Asia. The prominent correlation often observed between high As concentrations and methane (CH4) stimulated the analysis of the gas dynamics in an As contaminated aquifer, whereby noble and reactive gases were analysed. Results show a progressive depletion of atmospheric gases (Ar, Kr and N2) alongside highly increasing CH4, implying that a free gas phase comprised mainly of CH4 is formed within the aquifer. In contrast, Helium (He) concentrations are high within the CH4 (gas) producing zone, suggesting longer (groundwater) residence times. We hypothesized that the observed free (CH4) gas phase severely detracts local groundwater (flow) and significantly reduces water renewal within the gas producing zone. Results are in-line with this hypothesis, however, a second hypothesis has been developed, which focuses on the potential transport of He from an adjacent aquitard into the (CH4) gas producing zone. This second hypothesis was formulated as it resolves the particularly high He concentrations observed, and since external solute input from the overlying heterogeneous aquitard cannot be excluded. The proposed feedback between the gas phase and hydraulics provides a plausible explanation of the anti-intuitive correlation between high As and CH4, and the spatially highly patchy distribution of dissolved As concentrations in contaminated aquifers. Furthermore, the increased groundwater residence time would allow for the dissolution of more crystalline As-hosting iron(Fe)-oxide phases in conjunction with the formation of more stable secondary Fe minerals in the hydraulically-slowed (i.e., gas producing) zone; a subject which calls for further investigation.

4.
Water Res ; 200: 117300, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34107428

RESUMO

Geogenic arsenic (As) contamination of groundwater is a health threat to millions of people worldwide, particularly in alluvial regions of South and Southeast Asia. Mitigation measures are often hindered by high heterogeneities in As concentrations, the cause(s) of which are elusive. Here we used a comprehensive suite of stable isotope analyses and hydrogeochemical parameters to shed light on the mechanisms in a typical high-As Holocene aquifer near Hanoi where groundwater is advected to a low-As Pleistocene aquifer. Carbon isotope signatures (δ13C-CH4, δ13C-DOC, δ13C-DIC) provided evidence that fermentation, methanogenesis and methanotrophy are actively contributing to the As heterogeneity. Methanogenesis occurred concurrently where As levels are high (>200 µg/L) and DOC-enriched aquitard pore water infiltrates into the aquifer. Along the flowpath to the Holocene/Pleistocene aquifer transition, methane oxidation causes a strong shift in δ13C-CH4 from -87‰ to +47‰, indicating high reactivity. These findings demonstrate a previously overlooked role of methane cycling and DOC infiltration in high-As aquifers.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , Carbono , Monitoramento Ambiental , Humanos , Metano , Poluentes Químicos da Água/análise
5.
Sci Total Environ ; 779: 146501, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34030262

RESUMO

High arsenic (As) concentrations in groundwater are a worldwide problem threatening the health of millions of people. Microbial processes are central in the (trans)formation of the As-bearing ferric and ferrous minerals, and thus regulate dissolved As levels in many aquifers. Mineralogy, microbiology and dissolved As levels can vary sharply within aquifers, making high-resolution measurements particularly valuable in understanding the linkages between them. We conducted a high spatial resolution geomicrobiological study in combination with analysis of sediment chemistry and mineralogy in an alluvial aquifer system affected by geogenic As in the Red River delta in Vietnam. Microbial community analysis revealed a dominance of fermenters, methanogens and methanotrophs whereas sediment mineralogy along a 46 m deep core showed a diversity of Fe minerals including poorly crystalline Fe (II/III) and Fe(III) (oxyhydr)oxides such as goethite, hematite, and magnetite, but also the presence of Fe(II)-bearing carbonates and sulfides which likely formed as a result of microbially driven organic carbon (OC) degradation. A potential important role of methane (CH4) as electron donor for reductive Fe mineral (trans)formation was supported by the high abundance of Candidatus Methanoperedens, a known Fe(III)-reducing methanotroph. Overall, these results imply that OC turnover including fermentation, methanogenesis and CH4 oxidation are important mechanisms leading to Fe mineral (trans)formation, dissolution and precipitation, and thus indirectly affecting As mobility by changing the Fe-mineral inventory.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , Fermentação , Compostos Férricos , Humanos , Oxirredução , Vietnã , Poluentes Químicos da Água/análise
6.
Environ Pollut ; 281: 117012, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33813189

RESUMO

Fe(III) minerals play a crucial role for arsenic (As) mobility in aquifers as they usually represent the main As-bearing phases. Microbial reductive dissolution of As-bearing Fe(III) minerals is responsible for the release of As and the resulting groundwater contamination in many sites worldwide. So far, in most studies mainly abiogenic iron minerals have been considered. Yet, biogenic minerals that possess different properties to their abiogenic counterparts are also present in the environment. In some environments they dominate the iron mineral inventory but so far, it is unclear what this means for the As mobility. We, therefore, performed an in-situ aquifer Fe(III) minerals exposure experiment i) to evaluate how different biogenic and abiogenic Fe(III) minerals are transformed in a strongly reducing, As-contaminated aquifer (25 m) compared to As-free moderately reducing aquifer (32 m) and ii) to assess which microbial taxa are involved in these Fe(III) minerals transformations. We found that higher numbers of bacteria and archaea were associated with the minerals incubated in the As-contaminated compared to the non-contaminated aquifer and that all Fe(III) minerals were mainly colonized by Fe(III)-reducing bacteria, with Geobacter being the most abundant taxon. Additionally, fermenting microorganisms were abundant on minerals incubated in the As-contaminated aquifer, while methanotrophs were identified on the minerals incubated in the As-free moderately reducing aquifer, implying involvement of these microorganisms in Fe(III) reduction. We observed that biogenic Fe(III) minerals generally tend to become more reduced and when incubated in the As-contaminated aquifer sorbed more As than the abiogenic ones. Most of abiogenic and biogenic Fe(III) minerals were transformed into magnetite while biogenic more crystalline mixed phases were not subjected to visible transformation. This in-situ Fe(III) minerals incubation approach shows that biogenic minerals are more prone to be colonized by (Fe(III)-reducing) microorganisms and bind more As, although ultimately produce similar minerals during Fe(III) reduction.


Assuntos
Arsênio , Água Subterrânea , Compostos Férricos , Ferro , Minerais , Oxirredução
7.
J Hazard Mater ; 411: 125128, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-33485236

RESUMO

Although phosphate (PO43-) may play a decisive role in enriching toxic arsenic (As) in the groundwater of many Asian deltas, knowledge gaps exist regarding its interactions with As. This study investigates the simultaneous immobilisation of PO43- and As in aquifer sediments at a redox transition zone in the Red River Delta of Vietnam. The majority of PO43- and As was found to be structurally bound in layers of Fe(III)-(oxyhydr)oxide precipitates, indicating that their formation represents a dominant immobilisation mechanism. This immobilisation was also closely linked to sorption. In the surface sorbed sediment pools, the molar ratios of total P to As were one order of magnitude higher than found in groundwater, reflecting a preferential sorption of PO43- over As. However, this competitive sorption was largely dependent on the presence of Fe(III)-(oxyhydr)oxides. Ongoing contact of the aquifer sediments with iron-reducing groundwater resulted in the reductive dissolution of weakly crystalline Fe(III)-(oxyhydr)oxides, which was accompanied by decreased competition for sorption sites between PO43- and As. Our results emphasise that, to be successful in the medium and long term, remediation approaches and management strategies need to consider competitive sorption between PO43- and As and dynamics of the biogeochemical Fe-cycle.

8.
Sci Total Environ ; 717: 137143, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32062264

RESUMO

Geogenic arsenic (As) contamination of groundwater poses a major threat to global health, particularly in Asia. To mitigate this exposure, groundwater is increasingly extracted from low-As Pleistocene aquifers. This, however, disturbs groundwater flow and potentially draws high-As groundwater into low-As aquifers. Here we report a detailed characterisation of the Van Phuc aquifer in the Red River Delta region, Vietnam, where high-As groundwater from a Holocene aquifer is being drawn into a low-As Pleistocene aquifer. This study includes data from eight years (2010-2017) of groundwater observations to develop an understanding of the spatial and temporal evolution of the redox status and groundwater hydrochemistry. Arsenic concentrations were highly variable (0.5-510 µg/L) over spatial scales of <200 m. Five hydro(geo)chemical zones (indicated as A to E) were identified in the aquifer, each associated with specific As mobilisation and retardation processes. At the riverbank (zone A), As is mobilised from freshly deposited sediments where Fe(III)-reducing conditions occur. Arsenic is then transported across the Holocene aquifer (zone B), where the vertical intrusion of evaporative water, likely enriched in dissolved organic matter, promotes methanogenic conditions and further release of As (zone C). In the redox transition zone at the boundary of the two aquifers (zone D), groundwater arsenic concentrations decrease by sorption and incorporations onto Fe(II) carbonates and Fe(II)/Fe(III) (oxyhydr)oxides under reducing conditions. The sorption/incorporation of As onto Fe(III) minerals at the redox transition and in the Mn(IV)-reducing Pleistocene aquifer (zone E) has consistently kept As concentrations below 10 µg/L for the studied period of 2010-2017, and the location of the redox transition zone does not appear to have propagated significantly. Yet, the largest temporal hydrochemical changes were found in the Pleistocene aquifer caused by groundwater advection from the Holocene aquifer. This is critical and calls for detailed investigations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...