Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Brief Bioinform ; 20(2): 398-404, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28968751

RESUMO

Bioinformatics is now intrinsic to life science research, but the past decade has witnessed a continuing deficiency in this essential expertise. Basic data stewardship is still taught relatively rarely in life science education programmes, creating a chasm between theory and practice, and fuelling demand for bioinformatics training across all educational levels and career roles. Concerned by this, surveys have been conducted in recent years to monitor bioinformatics and computational training needs worldwide. This article briefly reviews the principal findings of a number of these studies. We see that there is still a strong appetite for short courses to improve expertise and confidence in data analysis and interpretation; strikingly, however, the most urgent appeal is for bioinformatics to be woven into the fabric of life science degree programmes. Satisfying the relentless training needs of current and future generations of life scientists will require a concerted response from stakeholders across the globe, who need to deliver sustainable solutions capable of both transforming education curricula and cultivating a new cadre of trainer scientists.


Assuntos
Disciplinas das Ciências Biológicas/educação , Pesquisa Biomédica , Biologia Computacional/educação , Biologia Computacional/métodos , Curadoria de Dados/métodos , Ciência de Dados/educação , Humanos , Inquéritos e Questionários
4.
Brief Bioinform ; 20(2): 405-415, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29028883

RESUMO

Demand for training life scientists in bioinformatics methods, tools and resources and computational approaches is urgent and growing. To meet this demand, new trainers must be prepared with effective teaching practices for delivering short hands-on training sessions-a specific type of education that is not typically part of professional preparation of life scientists in many countries. A new Train-the-Trainer (TtT) programme was created by adapting existing models, using input from experienced trainers and experts in bioinformatics, and from educational and cognitive sciences. This programme was piloted across Europe from May 2016 to January 2017. Preparation included drafting the training materials, organizing sessions to pilot them and studying this paradigm for its potential to support the development and delivery of future bioinformatics training by participants. Seven pilot TtT sessions were carried out, and this manuscript describes the results of the pilot year. Lessons learned include (i) support is required for logistics, so that new instructors can focus on their teaching; (ii) institutions must provide incentives to include training opportunities for those who want/need to become new or better instructors; (iii) formal evaluation of the TtT materials is now a priority; (iv) a strategy is needed to recruit, train and certify new instructor trainers (faculty); and (v) future evaluations must assess utility. Additionally, defining a flexible but rigorous and reliable process of TtT 'certification' may incentivize participants and will be considered in future.


Assuntos
Disciplinas das Ciências Biológicas/educação , Pesquisa Biomédica , Biologia Computacional/educação , Curadoria de Dados/métodos , Educação Continuada , Currículo , Estudos de Viabilidade , Humanos , Projetos Piloto
5.
Brief Bioinform ; 20(2): 384-389, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29106479

RESUMO

EMBL Australia Bioinformatics Resource (EMBL-ABR) is a developing national research infrastructure, providing bioinformatics resources and support to life science and biomedical researchers in Australia. EMBL-ABR comprises 10 geographically distributed national nodes with one coordinating hub, with current funding provided through Bioplatforms Australia and the University of Melbourne for its initial 2-year development phase. The EMBL-ABR mission is to: (1) increase Australia's capacity in bioinformatics and data sciences; (2) contribute to the development of training in bioinformatics skills; (3) showcase Australian data sets at an international level and (4) enable engagement in international programs. The activities of EMBL-ABR are focussed in six key areas, aligning with comparable international initiatives such as ELIXIR, CyVerse and NIH Commons. These key areas-Tools, Data, Standards, Platforms, Compute and Training-are described in this article.


Assuntos
Disciplinas das Ciências Biológicas , Pesquisa Biomédica , Biologia Computacional/educação , Biologia Computacional/métodos , Curadoria de Dados/métodos , Austrália , Humanos
6.
Integr Biol (Camb) ; 9(2): 97-108, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28106223

RESUMO

In the last decade, network approaches have transformed our understanding of biological systems. Network analyses and visualizations have allowed us to identify essential molecules and modules in biological systems, and improved our understanding of how changes in cellular processes can lead to complex diseases, such as cancer, infectious and neurodegenerative diseases. "Network medicine" involves unbiased large-scale network-based analyses of diverse data describing interactions between genes, diseases, phenotypes, drug targets, drug transport, drug side-effects, disease trajectories and more. In terms of drug discovery, network medicine exploits our understanding of the network connectivity and signaling system dynamics to help identify optimal, often novel, drug targets. Contrary to initial expectations, however, network approaches have not yet delivered a revolution in molecular medicine. In this review, we propose that a key reason for the limited impact, so far, of network medicine is a lack of quantitative multi-disciplinary studies involving scientists from different backgrounds. To support this argument, we present existing approaches from structural biology, 'omics' technologies (e.g., genomics, proteomics, lipidomics) and computational modeling that point towards how multi-disciplinary efforts allow for important new insights. We also highlight some breakthrough studies as examples of the potential of these approaches, and suggest ways to make greater use of the power of interdisciplinarity. This review reflects discussions held at an interdisciplinary signaling workshop which facilitated knowledge exchange from experts from several different fields, including in silico modelers, computational biologists, biochemists, geneticists, molecular and cell biologists as well as cancer biologists and pharmacologists.


Assuntos
Perfilação da Expressão Gênica/tendências , Ensaios de Triagem em Larga Escala/tendências , Estudos Interdisciplinares/tendências , Análise do Fluxo Metabólico/tendências , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Análise Serial de Tecidos/tendências , Animais , Simulação por Computador , Previsões , Humanos
7.
F1000Res ; 6: 1618, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30109017

RESUMO

Throughout history, the life sciences have been revolutionised by technological advances; in our era this is manifested by advances in instrumentation for data generation, and consequently researchers now routinely handle large amounts of heterogeneous data in digital formats. The simultaneous transitions towards biology as a data science and towards a 'life cycle' view of research data pose new challenges. Researchers face a bewildering landscape of data management requirements, recommendations and regulations, without necessarily being able to access data management training or possessing a clear understanding of practical approaches that can assist in data management in their particular research domain. Here we provide an overview of best practice data life cycle approaches for researchers in the life sciences/bioinformatics space with a particular focus on 'omics' datasets and computer-based data processing and analysis. We discuss the different stages of the data life cycle and provide practical suggestions for useful tools and resources to improve data management practices.

8.
J Biol Res (Thessalon) ; 22(1): 9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26336651

RESUMO

Data sharing, integration and annotation are essential to ensure the reproducibility of the analysis and interpretation of the experimental findings. Often these activities are perceived as a role that bioinformaticians and computer scientists have to take with no or little input from the experimental biologist. On the contrary, biological researchers, being the producers and often the end users of such data, have a big role in enabling biological data integration. The quality and usefulness of data integration depend on the existence and adoption of standards, shared formats, and mechanisms that are suitable for biological researchers to submit and annotate the data, so it can be easily searchable, conveniently linked and consequently used for further biological analysis and discovery. Here, we provide background on what is data integration from a computational science point of view, how it has been applied to biological research, which key aspects contributed to its success and future directions.

10.
PLoS Comput Biol ; 11(4): e1004143, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25856076

RESUMO

In recent years, high-throughput technologies have brought big data to the life sciences. The march of progress has been rapid, leaving in its wake a demand for courses in data analysis, data stewardship, computing fundamentals, etc., a need that universities have not yet been able to satisfy--paradoxically, many are actually closing "niche" bioinformatics courses at a time of critical need. The impact of this is being felt across continents, as many students and early-stage researchers are being left without appropriate skills to manage, analyse, and interpret their data with confidence. This situation has galvanised a group of scientists to address the problems on an international scale. For the first time, bioinformatics educators and trainers across the globe have come together to address common needs, rising above institutional and international boundaries to cooperate in sharing bioinformatics training expertise, experience, and resources, aiming to put ad hoc training practices on a more professional footing for the benefit of all.


Assuntos
Biologia Computacional/educação , Biologia Computacional/organização & administração , Currículo , Relações Interinstitucionais , Internacionalidade , Ensino/organização & administração
11.
Bioinformatics ; 31(1): 140-2, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25189782

RESUMO

SUMMARY: Rapid technological advances have led to an explosion of biomedical data in recent years. The pace of change has inspired new collaborative approaches for sharing materials and resources to help train life scientists both in the use of cutting-edge bioinformatics tools and databases and in how to analyse and interpret large datasets. A prototype platform for sharing such training resources was recently created by the Bioinformatics Training Network (BTN). Building on this work, we have created a centralized portal for sharing training materials and courses, including a catalogue of trainers and course organizers, and an announcement service for training events. For course organizers, the portal provides opportunities to promote their training events; for trainers, the portal offers an environment for sharing materials, for gaining visibility for their work and promoting their skills; for trainees, it offers a convenient one-stop shop for finding suitable training resources and identifying relevant training events and activities locally and worldwide. AVAILABILITY AND IMPLEMENTATION: http://mygoblet.org/training-portal.


Assuntos
Biologia Computacional/educação , Currículo , Sistemas de Gerenciamento de Base de Dados , Pesquisadores/educação , Ensino , Humanos , Linguagens de Programação , Design de Software
12.
Pathogens ; 3(1): 93-108, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25437609

RESUMO

Whole genome analysis based on next generation sequencing (NGS) now represents an affordable framework in public health systems. Robust analytical pipelines of genomic data provides in short laps of time (hours) information about taxonomy, comparative genomics (pan-genome) and single polymorphisms profiles. Pathogenic organisms of interest can be tracked at the genomic level, allowing monitoring at one-time several variables including: epidemiology, pathogenicity, resistance to antibiotics, virulence, persistence factors, mobile elements and adaptation features. Such information can be obtained not only at large spectra, but also at the "local" level, such as in the event of a recurrent or emergency outbreak. This paper reviews the state of the art in infection diagnostics in the context of modern NGS methodologies. We describe how actuation protocols in a public health environment will benefit from a "streaming approach" (pipeline). Such pipeline would NGS data quality assessment, data mining for comparative analysis, searching differential genetic features, such as virulence, resistance persistence factors and mutation profiles (SNPs and InDels) and formatted "comprehensible" results. Such analytical protocols will enable a quick response to the needs of locally circumscribed outbreaks, providing information on the causes of resistance and genetic tracking elements for rapid detection, and monitoring actuations for present and future occurrences.

15.
F1000Res ; 3: 271, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25653839

RESUMO

One of the foundations of the scientific method is to be able to reproduce experiments and corroborate the results of research that has been done before. However, with the increasing complexities of new technologies and techniques, coupled with the specialisation of experiments, reproducing research findings has become a growing challenge. Clearly, scientific methods must be conveyed succinctly, and with clarity and rigour, in order for research to be reproducible. Here, we propose steps to help increase the transparency of the scientific method and the reproducibility of research results: specifically, we introduce a peer-review oath and accompanying manifesto. These have been designed to offer guidelines to enable reviewers (with the minimum friction or bias) to follow and apply open science principles, and support the ideas of transparency, reproducibility and ultimately greater societal impact. Introducing the oath and manifesto at the stage of peer review will help to check that the research being published includes everything that other researchers would need to successfully repeat the work. Peer review is the lynchpin of the publishing system: encouraging the community to consciously (and conscientiously) uphold these principles should help to improve published papers, increase confidence in the reproducibility of the work and, ultimately, provide strategic benefits to authors and their institutions.

17.
Brief Bioinform ; 14(5): 548-55, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23793381

RESUMO

Next-generation sequencing (NGS) is increasingly being adopted as the backbone of biomedical research. With the commercialization of various affordable desktop sequencers, NGS will be reached by increasing numbers of cellular and molecular biologists, necessitating community consensus on bioinformatics protocols to tackle the exponential increase in quantity of sequence data. The current resources for NGS informatics are extremely fragmented. Finding a centralized synthesis is difficult. A multitude of tools exist for NGS data analysis; however, none of these satisfies all possible uses and needs. This gap in functionality could be filled by integrating different methods in customized pipelines, an approach helped by the open-source nature of many NGS programmes. Drawing from community spirit and with the use of the Wikipedia framework, we have initiated a collaborative NGS resource: The NGS WikiBook. We have collected a sufficient amount of text to incentivize a broader community to contribute to it. Users can search, browse, edit and create new content, so as to facilitate self-learning and feedback to the community. The overall structure and style for this dynamic material is designed for the bench biologists and non-bioinformaticians. The flexibility of online material allows the readers to ignore details in a first read, yet have immediate access to the information they need. Each chapter comes with practical exercises so readers may familiarize themselves with each step. The NGS WikiBook aims to create a collective laboratory book and protocol that explains the key concepts and describes best practices in this fast-evolving field.


Assuntos
Biologia Computacional/educação , Instrução por Computador/métodos , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Comportamento Cooperativo , Internet , Ensino
18.
Brief Bioinform ; 14(5): 528-37, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23803301

RESUMO

The mountains of data thrusting from the new landscape of modern high-throughput biology are irrevocably changing biomedical research and creating a near-insatiable demand for training in data management and manipulation and data mining and analysis. Among life scientists, from clinicians to environmental researchers, a common theme is the need not just to use, and gain familiarity with, bioinformatics tools and resources but also to understand their underlying fundamental theoretical and practical concepts. Providing bioinformatics training to empower life scientists to handle and analyse their data efficiently, and progress their research, is a challenge across the globe. Delivering good training goes beyond traditional lectures and resource-centric demos, using interactivity, problem-solving exercises and cooperative learning to substantially enhance training quality and learning outcomes. In this context, this article discusses various pragmatic criteria for identifying training needs and learning objectives, for selecting suitable trainees and trainers, for developing and maintaining training skills and evaluating training quality. Adherence to these criteria may help not only to guide course organizers and trainers on the path towards bioinformatics training excellence but, importantly, also to improve the training experience for life scientists.


Assuntos
Disciplinas das Ciências Biológicas/educação , Biologia Computacional/educação , Currículo , Mineração de Dados , Sistemas de Gerenciamento de Base de Dados , Linguagens de Programação , Design de Software , Ensino
19.
Methods Mol Biol ; 1021: 1-11, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23715977

RESUMO

Here we provide a broad overview of the definition of the term "systems biology" as well as pinpoint specific events in biological research and beyond that are consistently cited to have contributed and led to the current science of in silico systems biology. Since there have been many reviews and historical accounts describing the term, it would be impossible to include all single references. However, we do attempt to provide a consensus vision of how the field has evolved and consequently the terminology that followed it. We also highlight the development and general acceptance, and use, of standards for model representations as being crucial to the continued success of the in silico systems biology field.


Assuntos
Modelos Biológicos , Software , Biologia de Sistemas/métodos , Simulação por Computador , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Biologia de Sistemas/história , Biologia de Sistemas/normas , Terminologia como Assunto
20.
PLoS Comput Biol ; 8(12): e1002789, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300402

RESUMO

This article aims to introduce the nature of data integration to life scientists. Generally, the subject of data integration is not discussed outside the field of computational science and is not covered in any detail, or even neglected, when teaching/training trainees. End users (hereby defined as wet-lab trainees, clinicians, lab researchers) will mostly interact with bioinformatics resources and tools through web interfaces that mask the user from the data integration processes. However, the lack of formal training or acquaintance with even simple database concepts and terminology often results in a real obstacle to the full comprehension of the resources and tools the end users wish to access. Understanding how data integration works is fundamental to empowering trainees to see the limitations as well as the possibilities when exploring, retrieving, and analysing biological data from databases. Here we introduce a game-based learning activity for training/teaching the topic of data integration that trainers/educators can adopt and adapt for their classroom. In particular we provide an example using DAS (Distributed Annotation Systems) as a method for data integration.


Assuntos
Biologia/educação , Educação/métodos , Teoria dos Jogos , Internet , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...