Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cancer Immunol Immunother ; 73(5): 86, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554160

RESUMO

The Wnt family of secreted proteins are involved in mammary gland development and tumorigenesis. It has recently been shown that Wnt ligands promote M2 macrophage polarization and so we sought to determine the effects of a Wnt signaling antagonist, Secreted Frizzled Related Protein 1 (SFRP1), on M2 marker expression. We measured a murine M2 marker (Arg1) in mice with a targeted deletion of Sfrp1 during different stages of mammary gland development including puberty, pregnancy, and lactation, as well as in response to obesity. Next, to determine whether Wnt signaling/antagonism affects human M2 markers (CD209 and CCL18), we treated a human patient derived explant (PDE) breast tissue sample with exogenous Wnt3a in the presence and absence of rSFRP1. Finally, we expanded our PDE study to 13 patients and performed bulk RNAseq analysis following the treatment described above. We found that in loss of Sfrp1 in the murine mammary gland increased Arg1 expression. Moreover, we showed that Wnt3a increases CD209 and CCL18 mRNA and protein expression in breast PDEs and that their expression is decreased in response to rSFRP1. Our RNAseq analysis unveiled novel genes that were affected by Wnt3a treatment and subsequently reversed when rSFRP1 was added. Validation of these data exhibited that chemokines involved in promoting macrophage polarization and cancer metastasis, including CCL11 and CCL26, were stimulated by Wnt3a signaling and their expression was abrogated by treatment with rSFRP1. Our data suggest that SFRP1 may be an important mediator that tempers Wnt signaling in the tumor microenvironment.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos , Animais , Feminino , Humanos , Camundongos , Gravidez , Mama , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Via de Sinalização Wnt
2.
J Immunol ; 212(9): 1407-1419, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497670

RESUMO

Mast cells (MCs) play critical roles in the establishment of allergic diseases. We recently demonstrated an unexpected, proinflammatory role for IL-10 in regulating MC responses. IL-10 enhanced MC activation and promoted IgE-dependent responses during food allergy. However, whether these effects extend to IgE-independent stimuli is not clear. In this article, we demonstrate that IL-10 plays a critical role in driving IL-33-mediated MC responses. IL-10 stimulation enhanced MC expansion and degranulation, ST2 expression, IL-13 production, and phospho-relA upregulation in IL-33-treated cells while suppressing TNF-α. These effects were partly dependent on endogenous IL-10 and further amplified in MCs coactivated with both IL-33 and IgE/Ag. IL-10's divergent effects also extended in vivo. In a MC-dependent model of IL-33-induced neutrophilia, IL-10 treatment enhanced MC responsiveness, leading to suppression of neutrophils and decreased TNF-α. In contrast, during IL-33-induced type 2 inflammation, IL-10 priming exacerbated MC activity, resulting in MC recruitment to various tissues, enhanced ST2 expression, induction of hypothermia, recruitment of eosinophils, and increased MCPT-1 and IL-13 levels. Our data elucidate an important role for IL-10 as an augmenter of IL-33-mediated MC responses, with implications during both allergic diseases and other MC-dependent disorders. IL-10 induction is routinely used as a prognostic marker of disease improvement. Our data suggest instead that IL-10 can enhance ST2 responsiveness in IL-33-activated MCs, with the potential to both aggravate or suppress disease severity depending on the inflammatory context.


Assuntos
Hipersensibilidade Alimentar , Mastócitos , Humanos , Mastócitos/metabolismo , Interleucina-10/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Imunoglobulina E/metabolismo , Interleucina-33/metabolismo , Interleucina-13/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Inflamação/metabolismo , Degranulação Celular
3.
Front Nutr ; 11: 1258905, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419845

RESUMO

Objective: The cytokine profile of human milk may be a key indicator of mammary gland health and has been linked to infant nutrition, growth, and immune system development. The current study examines the extent to which mammary epithelium permeability (MEP) is associated with cytokine profiles during established lactation within a sample of US mothers. Methods: Participants were drawn from a previous study of human milk cytokines. The present analysis includes 162 participants (98 Black, 64 White) with infants ranging from 1 to 18 months of age. Levels of cytokines were determined previously. Here we measure milk sodium (Na) and potassium (K) levels with ion-selective probes. Two approaches were used to define elevated MEP: Na levels ≥10 mmol/L and Na/K ratios greater than 0.6. Associations between maternal-infant characteristics, elevated MEP, and twelve analytes (IL-6, IL-8, TNFα, IL-1ß, FASL, VEGFD, FLT1, bFGF, PLGF, EGF, leptin, adiponectin) were examined using bivariate associations, principal components analysis, and multivariable logistic regression models. Results: Elevated MEP was observed in 12 and 15% of milk samples as defined by Na and Na/K cutoffs, respectively. The odds of experiencing elevated MEP (defined by Na ≥ 10 mmol/L) were higher among Black participants and declined with older infant age. All cytokines, except leptin, were positively correlated with either Na or the Na/K ratio. A pro-inflammatory factor (IL-6, IL-8, TNFα, IL-1ß, EGF) and a tissue remodeling factor (FASL, VEGFD, FLT1, bFGF, PLGF, adiponectin) each contributed uniquely to raising the odds of elevated MEP as defined by either Na or the Na/K ratio. Conclusion: This exploratory analysis of MEP and cytokine levels during established lactation indicates that elevated MEP may be more common in US populations than previously appreciated and that individuals identifying as Black may have increased odds of experiencing elevated MEP based on current definitions. Research aimed at understanding the role of MEP in mammary gland health or infant growth and development should be prioritized.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37593105

RESUMO

Environmental chemicals are a persistent and pervasive part of everyday life. A subset of environmental chemicals are xenoestrogens, compounds that bind to the estrogen receptor (ER) and drive estrogen-related processes. One such chemical, benzophenone-3 (BP3), is a common chemical in sunscreen. It is a potent UV protectant but also is quickly absorbed through the skin. While it has been approved by the FDA, there is a renewed interest in the safety of BP3, particularly in relation to breast cancer. The focus of this study was to examine the impact that BP3 has on triple negative breast cancer (TNBC) through alterations to cells in the immune microenvironment. In this study, we exposed female mice to one of two doses of BP3 before injecting them with a TNBC cell line. Several immune endpoints were examined both in the primary tissues and from in vitro studies of T cell behavior. Our studies revealed that in the lung tumor microenvironment, exposure to BP3 not only increased the number of metastases, but also the total area of tumor coverage. We also found that BP3 caused alterations in immune populations in a tissue-dependent manner, particularly in T cells. Taken together, our data suggest that while BP3 may not directly affect the proliferation of TNBC, growth and metastasis of TNBC-derived tumors can be altered by BP3 exposures via the alterations in the immune populations of the tumor microenvironment.

5.
Front Immunol ; 13: 985226, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172379

RESUMO

Background: Given that only 25% of pregnant women elect to receive a COVID-19 vaccine, maternal SARS-CoV-2 infection remains an important route of conferring protective passive immunity to breastfed infants of mothers who are not vaccinated. Methods: We enrolled 30 lactating participants between December 2020 and March 2021 who had a positive PCR-test and their first COVID-19 symptoms within the previous 21 days. Participants were asked to provide serial bilateral milk samples at 12 timepoints (~ every 3 days) over a period of 35 days. A second set of samples was collected at least four months after the beginning of the first set. Participants also were asked to provide their dried blood spots and infant stool samples. All samples were tested for receptor-binding domain (RBD)-specific immunoglobulin (Ig)A, IgG, and IgM. Milk samples were assessed for neutralizing ability against the spike protein and four SARS-CoV-2 variants: D614G, Alpha (B.1.1.7), Beta (B.1.351), and Gamma (P.1). Permeability of the breast epithelium was assessed by measuring the sodium to potassium ions (Na:K) in milk. Using flow cytometry, memory CD4 and CD8 T cells (CD45RO+ and CCR7+/-) and mucosal-homing CD4 and CD8 T cells (CD103+) were determined in cells from milk expressed at 35 days and at least 4 months after their first milk donation. Results: Milk antibodies from SARS-CoV-2 positive participants neutralized the spike complex. Milk from 73, 90, and 53% of participants had binding reactivities to RBD-specific IgA, IgG, and IgM, respectively. In contrast to blood spots, which showed increased levels of IgG, but not IgA or IgM, the COVID-19 response in milk was associated with a robust IgA response. Twenty-seven percent of participants had increased breast-epithelium permeability, as indicated by Na:K ≥ 0.6. The percentage of CD45RO+CCR7- effector-memory T cells in the day ≥120 milk samples was significantly higher than day 35 samples (P< 0.05). Conclusions: Antibodies in milk from participants with recent SARS-CoV-2 infection and those who recovered can neutralize the spike complex. For the first time we show that breastmilk T cells are enriched for mucosal memory T cells, further emphasizing the passive protection against SARS-CoV-2 conferred to infants via breastmilk.


Assuntos
COVID-19 , SARS-CoV-2 , Vacinas contra COVID-19 , Feminino , Humanos , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M , Lactente , Lactação , Células T de Memória , Leite Humano , Potássio , Gravidez , Receptores CCR7 , Sódio , Glicoproteína da Espícula de Coronavírus
6.
Front Toxicol ; 4: 910230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669359

RESUMO

Mammary stroma is a prominent modulator of epithelial development, and a complex set of interactions between these tissue compartments is essential for normal development, which can be either permissive or restrictive in tumor initiation and progression. During perinatal development, exposures of mice to oxybenzone, a common UV filter, environmental pollutant and endocrine disruptor, induce alterations in mammary epithelium. Our prior research indicates that oxybenzone alters mammary epithelial structures at puberty and in adulthood. We had also previously observed changes in the expression of hormone receptors at puberty (e.g., oxybenzone induced a decrease in the number of epithelial cells positive for progesterone receptor) and in adulthood (e.g., oxybenzone induced a decrease in the number of estrogen receptor-positive epithelial cells), and increased body weight in adulthood. Here, we investigated mammary stromal changes in BALB/c animals exposed during gestation and perinatal development to 0, 30, or 3000 µg oxybenzone/kg/day. In mice exposed to 30 µg/kg/day, we observed morphological changes in adulthood (e.g., a thicker periductal stroma and adipocytes that were considerably larger). We also observed an increased number of mast cells in the mammary stroma at puberty which may represent a transient influence of oxybenzone exposure. These results provide additional evidence that even low doses of oxybenzone can disrupt hormone sensitive outcomes in the mammary gland when exposures occur during critical windows of development, and some of these effects manifest in later life.

7.
Reprod Toxicol ; 111: 184-193, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35690277

RESUMO

While mammographic breast density is associated with breast cancer risk in humans, there is no comparable surrogate risk measure in mouse and rat mammary glands following various environmental exposures. In the current study, mammary glands from mice and rats subjected to reproductive factors and exposures to environmental chemicals that have been shown to influence mammary gland development and/or susceptibility to mammary tumors were evaluated for histologic density by manual and automated digital methods. Digital histological density detected changes due to hormonal stimuli/reproductive factors (parity), dietary fat, and exposure to environmental chemicals, such as benzophenone-3 and a combination of perfluorooctanoic acid and zeranol. Thus, digital analysis of mammary gland density offers a high throughput method that can provide a highly reproducible means of comparing a measure of histological density across independent experiments, experimental systems, and laboratories. This methodology holds promise for the detection of environmental impacts on mammary gland structure in mice and rats that may be comparable to human breast density, thus potentially allowing comparisons between rodent models and human breast cancer studies.


Assuntos
Neoplasias da Mama , Glândulas Mamárias Animais , Animais , Densidade da Mama , Meio Ambiente , Feminino , Humanos , Camundongos , Gravidez , Ratos , Roedores
8.
Ecotoxicol Environ Saf ; 241: 113722, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35724515

RESUMO

PCB 126 is a pervasive, dioxin-like chemical pollutant which can activate the aryl hydrocarbon receptor (AhR). Despite being banned from the market, PCB 126 can be detected in breast milk to this day. The extent to which interindividual variation impacts the adverse responses to this chemical in the breast tissue remains unclear. This study aimed to investigate the impact of 3 nM PCB 126 on gene expression in a panel of genetically diverse benign human breast epithelial cell (HBEC) cultures and patient derived breast tissues. Six patient derived HBEC cultures were treated with 3 nM PCB 126. RNAseq was used to interrogate the impact of exposure on differential gene expression. Gene expression changes from the top critical pathways were confirmed via qRT-PCR in a larger panel of benign patient derived HBEC cultures, as well as in patient-derived breast tissue explant cultures. RNAseq analysis of HBEC cultures revealed a signature of 144 genes significantly altered by 3 nM PCB 126 treatment. Confirmation of 8 targets using a panel of 12 HBEC cultures and commercially available breast cell lines demonstrated that while the induction of canonical downstream target gene, CYP1A1, was consistent across our primary HBECs, other genes including AREG, S100A8, IL1A, IL1B, MMP7, and CCL28 exhibited significant variability across individuals. The dependence on the activity of the aryl hydrocarbon receptor was confirmed using inhibitors. PCB 126 can induce significant and consistent changes in gene expression associated with xenobiotic metabolism in benign breast epithelial cells. Although the induction of most genes was reliant on the AhR, significant variability was noted between genes and individuals. These data suggest that there is a bifurcation of the pathway following AhR activation that contributes to the variation in interindividual responses.


Assuntos
Bifenilos Policlorados , Receptores de Hidrocarboneto Arílico , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Células Epiteliais/metabolismo , Feminino , Expressão Gênica , Humanos , Bifenilos Policlorados/toxicidade , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
9.
Obstet Gynecol ; 139(2): 181-191, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104067

RESUMO

OBJECTIVE: To evaluate immune responses to coronavirus disease 2019 (COVID-19) mRNA-based vaccines present in breast milk and transfer of the immune responses to breastfeeding infants. METHODS: We enrolled 30 lactating women who received mRNA-based COVID-19 vaccines from January through April 2021 in this cohort study. Women provided serial milk samples, including milk expressed before vaccination, across 2-3 weeks after the first dose, and across 3 weeks after the second dose. Women provided their blood, spotted on cards (dried blood spots), 19 days after the first dose and 21 days after the second dose. Stool samples from the breastfed infants were collected 21 days after mothers' second vaccination. Prepandemic samples of milk, dried blood spots, and infant stool were used as controls. Milk, dried blood spots, and infant stool were tested by enzyme-linked immunosorbent assay for receptor-binding domain (RBD)-specific immunoglobulin (Ig)A and IgG. Milk samples were tested for the presence of neutralizing antibodies against the spike and four variants of concern: D614G, Alpha (B.1.1.7), Beta (B.1.351), and Gamma (P.1). Levels of 10 cytokines were measured in milk samples. RESULTS: Milk from COVID-19-immunized women neutralized the spike and four variants of concern, primarily driven by anti-RBD IgG. The immune response in milk also included significant elevation of interferon-γ. The immune response to maternal vaccination was reflected in breastfed infants: anti-RBD IgG and anti-RBD IgA were detected in 33% and 30% of infant stool samples, respectively. Levels of anti-RBD antibodies in infant stool correlated with maternal vaccine side effects. Median antibody levels against RBD were below the positive cutoffs in prepandemic milk and infant stool samples. CONCLUSION: Humoral and cellular immune responses to mRNA-based COVID-19 vaccination are present in most women's breast milk. The milk anti-RBD antibodies can neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike and variants of concern. Anti-RBD antibodies are transferred to breastfed infants, with the potential to confer passive immunity against SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes/análise , Aleitamento Materno , Vacinas contra COVID-19/imunologia , Citocinas/análise , Leite Humano/química , SARS-CoV-2/imunologia , Adulto , Anticorpos Antivirais/análise , Estudos de Coortes , Feminino , Humanos , Imunoglobulina A/análise , Imunoglobulina G/análise , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Vacinação
10.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163327

RESUMO

Endocrine-disrupting chemicals (EDCs)-including butyl benzyl phthalate (BBP), perfluorooctanoic acid (PFOA), and zeranol (α-ZAL, referred to as ZAL hereafter)-can interfere with the endocrine system and produce adverse effects. It remains unclear whether pubertal exposure to low doses of BBP, PFOA, and ZAL has an impact on breast development and tumorigenesis. We exposed female Sprague Dawley rats to BBP, PFOA, or ZAL through gavage for 21 days, starting on day 21, and analyzed their endocrine organs, serum hormones, mammary glands, and transcriptomic profiles of the mammary glands at days 50 and 100. We also conducted a tumorigenesis study for rats treated with PFOA and ZAL using a 7,12-dimethylbenz[a]anthracene (DMBA) model. Our results demonstrated that pubertal exposure to BBP, PFOA, and ZAL affected endocrine organs and serum hormones, and induced phenotypic and transcriptomic changes. The exposure to PFOA + ZAL induced the most phenotypic and transcriptomic changes in the mammary gland. PFOA + ZAL downregulated the expression of genes related to development at day 50, whereas it upregulated genes associated with tumorigenesis at day 100. PFOA + ZAL exposure also decreased rat mammary tumor latency, reduced the overall survival of rats after DMBA challenge, and affected the histopathology of mammary tumors. Therefore, our study suggests that exposure to low doses of EDCs during the pubertal period could induce changes in the endocrine system and mammary gland development in rats. The inhibition of mammary gland development by PFOA + ZAL might increase the risk of developing mammary tumors through activation of signaling pathways associated with tumorigenesis.


Assuntos
Disruptores Endócrinos , Neoplasias Mamárias Animais , Neoplasias Mamárias Experimentais , Zeranol , 9,10-Dimetil-1,2-benzantraceno , Animais , Caprilatos , Carcinogênese/induzido quimicamente , Transformação Celular Neoplásica , Disruptores Endócrinos/efeitos adversos , Feminino , Fluorocarbonos , Hormônios , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Ácidos Ftálicos , Ratos , Ratos Sprague-Dawley
11.
Oncogene ; 40(31): 5026-5037, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34183771

RESUMO

Breast cancer is the most common tumor among women with inherited variants in the TP53 tumor suppressor, but onset varies widely suggesting interactions with genetic or environmental factors. Rodent models haploinsufficent for Trp53 also develop a wide variety of malignancies associated with Li-Fraumeni syndrome, but BALB/c mice are uniquely susceptible to mammary tumors and is genetically linked to the Suprmam1 locus on chromosome 7. To define mechanisms that interact with deficiencies in p53 to alter susceptibility to mammary tumors, we fine mapped the Suprmam1 locus in females from an N2 backcross of BALB/cMed and C57BL/6J mice. A major modifier was localized within a 10 cM interval on chromosome 7. The effect of the locus on DNA damage responses was examined in the parental strains and mice that are congenic for C57BL/6J alleles on the BALB/cMed background (SM1-Trp53+/-). The mammary epithelium of C57BL/6J-Trp53+/- females exhibited little radiation-induced apoptosis compared to BALB/cMed-Trp53+/- and SM1-Trp53+/- females indicating that the Suprmam1B6/B6 alleles could not rescue repair of radiation-induced DNA double-strand breaks mostly relying on non-homologous end joining. In contrast, the Suprmam1B6/B6 alleles in SM1-Trp53+/- mice were sufficient to confer the C57BL/6J-Trp53+/- phenotypes in homology-directed repair and replication fork progression. The Suprmam1B6/B6 alleles in SM1-Trp53+/- mice appear to act in trans to regulate a panel of DNA repair and replication genes which lie outside the locus.


Assuntos
Neoplasias da Mama/etiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , Genes Modificadores , Síndrome de Li-Fraumeni/complicações , Síndrome de Li-Fraumeni/genética , Animais , Neoplasias da Mama/diagnóstico , Mapeamento Cromossômico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Regulação da Expressão Gênica , Ligação Genética , Loci Gênicos , Camundongos , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Reparo de DNA por Recombinação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
12.
Ann Biomed Eng ; 49(8): 1900-1908, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34142276

RESUMO

In Ethiopia, a breast cancer diagnosis is associated with a prognosis significantly worse than that of Europe and the US. Further, patients presenting with breast cancer in Ethiopia are far younger, on average, and patients are typically diagnosed at very late stages, relative to breast cancer patients of European descent. Emerging data suggest that a large proportion of Ethiopian patients have hormone-positive (ER+) breast cancer. This is surprising given (1) that patients have late-stage breast cancer at the time of diagnosis, (2) that African Americans with breast cancer frequently have triple negative breast cancer (TNBC), and (3) these patients typically receive chemotherapy, not hormone-targeting drugs. To further examine the similarity of Ethiopian breast tumors to those of African Americans or of those of European descent, we sequenced matched tumor and normal adjacent tissue from Ethiopian patients from a small pilot collection. We identified mutations in 615 genes across all three patients, unique to the tumor tissue. Across this analysis, we found far more mutations shared between Ethiopian patient tissue and that from white patients (103) than we did comparing to African Americans (3). Several mutations were found in extracellular matrix encoding genes with known roles in tumor cell growth and metastasis. We suggest future mechanistic studies on this disease focus on these genes first, toward finding new treatment strategies for breast cancer patients in Ethiopia.


Assuntos
Genes Neoplásicos , Mutação , Neoplasias de Mama Triplo Negativas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Etiópia/etnologia , Feminino , Humanos , Lactente , Pessoa de Meia-Idade , Metástase Neoplásica , Neoplasias de Mama Triplo Negativas/etnologia , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia
13.
Endocrinology ; 162(6)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33724348

RESUMO

The mammary gland is a hormone sensitive organ that is susceptible to endocrine-disrupting chemicals (EDCs) during the vulnerable periods of parous reorganization (ie, pregnancy, lactation, and involution). Pregnancy is believed to have long-term protective effects against breast cancer development; however, it is unknown if EDCs can alter this effect. We examined the long-term effects of propylparaben, a common preservative used in personal care products and foods, with estrogenic properties, on the parous mouse mammary gland. Pregnant BALB/c mice were treated with 0, 20, 100, or 10 000 µg/kg/day propylparaben throughout pregnancy and lactation. Unexposed nulliparous females were also evaluated. Five weeks post-involution, mammary glands were collected and assessed for changes in histomorphology, hormone receptor expression, immune cell number, and gene expression. For several parameters of mammary gland morphology, propylparaben reduced the effects of parity. Propylparaben also increased proliferation, but not stem cell number, and induced modest alterations to expression of ERα-mediated genes. Finally, propylparaben altered the effect of parity on the number of several immune cell types in the mammary gland. These results suggest that propylparaben, at levels relevant to human exposure, can interfere with the effects of parity on the mouse mammary gland and induce long-term alterations to mammary gland structure. Future studies should address if propylparaben exposures negate the protective effects of pregnancy on mammary cancer development.


Assuntos
Lactação/efeitos dos fármacos , Glândulas Mamárias Animais/efeitos dos fármacos , Parabenos/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Animais , Células Cultivadas , Disruptores Endócrinos/toxicidade , Feminino , Masculino , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/patologia , Exposição Materna/efeitos adversos , Camundongos , Camundongos Endogâmicos BALB C , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia
14.
Epigenetics ; 16(4): 458-467, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32749195

RESUMO

Epidemiological studies have established obesity as a critical risk factor for postmenopausal breast cancer (post-BC), whereas a reverse association holds prior to menopause. A significant scientific gap exists in understanding the mechanism(s) underpinning this epidemiological phenomenon, particularly the reverse association between obesity and premenopausal breast cancer (pre-BC). This study aimed to understand how folate metabolism and DNA methylation inform the association between obesity and pre-BC. Fifty normal breast tissue samples were collected from premenopausal women who underwent reduction mammoplasty. We modified the Lactobacillus Casei microbiological folate assay and measured folate levels in our breast tissue samples. The DNA methylation of LINE-1, a biomarker of genome-wide methylation, and the expression of a panel of breast cancer-related genes was measured by pyrosequencing and real-time PCR. We found that a high BMI is associated with an increase of folate levels in mammary tissue, with an increase of 2.65 ng/g of folate per every 5-unit increase of BMI (p < 0.05). LINE-1 DNA methylation was significantly associated with BMI (p < 0.05), and marginally associated with folate concentration (p = 0.087). A high expression of SFRP1 was observed in subjects with high BMI or high folate status (p < 0.05). This study demonstrated that, in premenopausal women, obesity is associated with increased mammary folate status, genome-wide DNA methylation and SFRP1 gene expression. Our findings indicated that the improved folate and epigenetic status represents a novel mechanism responsible for the reverse association between obesity and pre-BC.


Assuntos
Neoplasias da Mama , Metilação de DNA , Índice de Massa Corporal , Neoplasias da Mama/genética , Feminino , Ácido Fólico , Expressão Gênica , Humanos , Obesidade/genética
15.
Immunol Cell Biol ; 98(10): 883-896, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32713010

RESUMO

Ex vivo mammary explant systems are an excellent model to study interactions between epithelium and stromal cell types because they contain physiologically relevant heterotypic interactions in the background of genetically diverse patients. The intact human mammary tissue, termed patient-derived explant (PDE), can be used to investigate cellular responses to a wide variety of external stimuli in situ. For this study, we examined the impact of cytokines or environmental chemicals on macrophage phenotypes. We demonstrate that we can polarize macrophages within human breast tissue PDEs toward M1 or M2 through the addition of interferon-γ (IFNγ) + lipopolysaccharide (LPS) or interleukin (IL)-4 + IL-13, respectively. Elevated expression levels of M(IFNγ + LPS) markers (HLADRA and CXCL10) or M(IL-4 + IL-13) markers (CD209 and CCL18) were observed in cytokine-treated tissues. We also examined the impact of the endocrine-disrupting chemical, benzophenone-3, on PDEs and measured significant, yet varying effects on macrophage polarization. Furthermore, a subset of the PDEs respond to IL-4 + IL-13 through downregulation of E-cadherin and upregulation of vimentin which is reminiscent of epithelial-to-mesenchymal transition (EMT) changes. Finally, we were able to show immortalized nonmalignant breast epithelial cells can exhibit EMT characteristics when exposed to growth factors secreted by M(IL-4 + IL-13) macrophages. Taken together, the PDE model system is an outstanding preclinical model to study early tissue-resident immune responses and effects on epithelial and stromal responses to stimuli found both endogenously in the breast and exogenously as a result of exposures.


Assuntos
Mama/imunologia , Exposição Ambiental , Ativação de Macrófagos , Benzofenonas/efeitos adversos , Mama/efeitos dos fármacos , Polaridade Celular , Disruptores Endócrinos/efeitos adversos , Feminino , Humanos , Macrófagos/citologia , Técnicas de Cultura de Tecidos
16.
Breast Cancer Res ; 22(1): 44, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393308

RESUMO

BACKGROUND: Early life environmental exposures affect breast development and breast cancer risk in adulthood. The breast is particularly vulnerable during puberty when mammary epithelial cells proliferate exponentially. In overweight/obese (OB) women, inflammation increases breast aromatase expression and estrogen synthesis and promotes estrogen-receptor (ER)-positive breast cancer. In contrast, recent epidemiological studies suggest that obesity during childhood decreases future breast cancer risk. Studies on environmental exposures and breast cancer risk have thus far been limited to animal models. Here, we present the first interrogation of the human adolescent breast at the molecular level and investigate how obesity affects the immature breast. METHODS: We performed RNA-seq in 62 breast tissue samples from adolescent girls/young women (ADOL; mean age 17.8 years) who underwent reduction mammoplasty. Thirty-one subjects were non-overweight/obese (NOB; mean BMI 23.4 kg/m2) and 31 were overweight/obese (OB; BMI 32.1 kg/m2). We also compared our data to published mammary transcriptome datasets from women (mean age 39 years) and young adult mice, rats, and macaques. RESULTS: The ADOL breast transcriptome showed limited (30%) overlap with other species, but 88% overlap with adult women for the 500 most highly expressed genes in each dataset; only 43 genes were shared by all groups. In ADOL, there were 120 differentially expressed genes (DEG) in OB compared with NOB samples (padj < 0.05). Based on these DEG, Ingenuity Pathway Analysis (IPA) identified the cytokines CSF1 and IL-10 and the chemokine receptor CCR2 as among the most highly activated upstream regulators, suggesting increased inflammation in the OB breast. Classical ER targets (e.g., PR, AREG) were not differentially expressed, yet IPA identified the ER and PR and growth factors/receptors (VEGF, HGF, HER3) and kinases (AKT1) involved in hormone-independent ER activation as activated upstream regulators in OB breast tissue. CONCLUSIONS: These studies represent the first investigation of the human breast transcriptome during late puberty/young adulthood and demonstrate that obesity is associated with a transcriptional signature of inflammation which may augment estrogen action in the immature breast microenvironment. We anticipate that these studies will prompt more comprehensive cellular and molecular investigations of obesity and its effect on the breast during this critical developmental window.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/patologia , Mama/patologia , Obesidade/fisiopatologia , Receptores de Estrogênio/metabolismo , Transcriptoma , Adolescente , Adulto , Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Humanos , Inflamação , Fatores de Risco , Microambiente Tumoral , Adulto Jovem
17.
Epigenetics ; 15(10): 1093-1106, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32255732

RESUMO

While changes in DNA methylation are known to occur early in breast carcinogenesis and the landscape of breast tumour DNA methylation is profoundly altered compared with normal tissue, there have been limited efforts to identify DNA methylation field cancerization effects in histologically normal breast tissue adjacent to tumour. Matched tumour, histologically normal tissue of the ipsilateral breast (ipsilateral-normal), and histologically normal tissue of the contralateral breast (contralateral-normal) were obtained from nine women undergoing bilateral mastectomy. Laser capture microdissection was used to select epithelial cells from normal tissue, and neoplastic cells from tumour for genome-scale measures of DNA methylation with the Illumina HumanMethylationEPIC array. We identified substantially more CpG loci that were differentially methylated between contralateral-normal and tumour (63,271 CpG loci q < 0.01), than between ipsilateral-normal and tumour (38,346 CpG loci q < 0.01). We identified differential methylation in ipsilateral-normal relative to contralateral-normal tissue (9,562 CpG loci p < 0.01). In this comparison, hypomethylated loci were significantly enriched for breast cancer-relevant transcription factor binding sites including those for ESR1, FoxA1, and GATA3 and hypermethylated loci were significantly enriched for CpG island shore regions. In addition, progression of shore hypermethylation was observed in tumours compared to matched ipsilateral normal tissue, and these alterations tracked to several well-established tumour suppressor genes. Our results indicate an epigenetic field effect in surrounding histologically normal tissue. This work offers an opportunity to focus investigations of early DNA methylation alterations in breast carcinogenesis and potentially develop epigenetic biomarkers of disease risk. ABBREVIATIONS: DCIS: ductal carcinoma in situ; GO: gene ontology; OR: odds ratio; CI: confidence interval; TFBS: transcription factor binding site; LOLA: Locus Overlap Analysis.


Assuntos
Neoplasias da Mama/genética , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Fator de Transcrição GATA3/metabolismo , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Regiões Promotoras Genéticas
18.
J Mammary Gland Biol Neoplasia ; 25(1): 51-68, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32152951

RESUMO

Exposure to estrogen is strongly associated with increased breast cancer risk. While all women are exposed to estrogen, only 12% are expected to develop breast cancer during their lifetime. These women may be more sensitive to estrogen, as rodent models have demonstrated variability in estrogen sensitivity. Our objective was to determine individual variation in expression of estrogen receptor (ER) and estrogen-induced responses in the normal human breast. Human breast tissue from female donors undergoing reduction mammoplasty surgery were collected for microarray analysis of ER expression. To examine estrogen-induced responses, breast tissue from 23 female donors were cultured ex- vivo in basal or 10 nM 17ß-estradiol (E2) media for 4 days. Expression of ER genes (ESR1 and ESR2) increased significantly with age. E2 induced consistent increases in global gene transcription, but expression of target genes AREG, PGR, and TGFß2 increased significantly only in explants from nulliparous women. E2-treatment did not induce consistent changes in proliferation or radiation induced apoptosis. Responses to estrogen are highly variable among women and not associated with levels of ER expression, suggesting differences in intracellular signaling among individuals. The differences in sensitivity to E2-stimulated responses may contribute to variation in risk of breast cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Estrogênios/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Adolescente , Adulto , Idoso , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico , Receptores de Estrogênio/genética , Células Tumorais Cultivadas , Adulto Jovem
19.
Environ Health Perspect ; 128(1): 17002, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31939680

RESUMO

BACKGROUND: Endocrine-disrupting chemicals have been shown to have broad effects on development, but their mutagenic actions that can lead to cancer have been less clearly demonstrated. Physiological levels of estrogen have been shown to stimulate DNA damage in breast epithelial cells through mechanisms mediated by estrogen-receptor alpha (ERα). Benzophenone-3 (BP-3) and propylparaben (PP) are xenoestrogens found in the urine of >96% of U.S. OBJECTIVES: We investigated the effect of BP-3 and PP on estrogen receptor-dependent transactivation and DNA damage at concentrations relevant to exposures in humans. METHODS: In human breast epithelial cells, DNA damage following treatment with 17ß-estradiol (E2), BP-3, and PP was determined by immunostaining with antibodies against γ-H2AX and 53BP1. Estrogenic responses were determined using luciferase reporter assays and gene expression. Formation of R-loops was determined with DNA: RNA hybrid-specific S9.6 antibody. Short-term exposure to the chemicals was also studied in ovariectomized mice. Immunostaining of mouse mammary epithelium was performed to quantify R-loops and DNA damage in vivo. RESULTS: Concentrations of 1µM and 5µM BP-3 or PP increased DNA damage similar to that of E2 treatment in a ERα-dependent manner. However, BP-3 and PP had limited transactivation of target genes at 1µM and 5µM concentrations. BP-3 and PP exposure caused R-loop formation in a normal human breast epithelial cell line when ERα was introduced. R-loops and DNA damage were also detected in mammary epithelial cells of mice treated with BP-3 and PP. CONCLUSIONS: Acute exposure to xenoestrogens (PP and BP-3) in mice induce DNA damage mediated by formation of ERα-dependent R-loops at concentrations 10-fold lower than those required for transactivation. Exposure to these xenoestrogens may cause deleterious estrogenic responses, such as DNA damage, in susceptible individuals. https://doi.org/10.1289/EHP5221.


Assuntos
Benzofenonas/toxicidade , Poluentes Ambientais/toxicidade , Parabenos/toxicidade , Animais , Linhagem Celular Tumoral , Células Epiteliais , Humanos , Camundongos , Estruturas R-Loop/efeitos dos fármacos , Receptores de Estrogênio/efeitos dos fármacos , Testes de Toxicidade
20.
Front Immunol ; 11: 606837, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33414789

RESUMO

The thiol isomerase, protein disulfide isomerase (PDI), plays important intracellular roles during protein folding, maintaining cellular function and viability. Recent studies suggest novel roles for extracellular cell surface PDI in enhancing cellular activation and promoting their function. Moreover, a number of food-derived substances have been shown to regulate cellular PDI activity and alter disease progression. We hypothesized that PDI may have similar roles during mast cell-mediated allergic responses and examined its effects on IgE-induced mast cell activity during cell culture and food allergy. Mast cells were activated via IgE and antigen and the effects of PDI inhibition on mast cell activation were assessed. The effects of PDI blockade in vivo were examined by treating mice with the irreversible PDI inhibitor, PACMA-31, in an ovalbumin-induced model of food allergy. The role of dietary PDI modulators was investigated using various dietary compounds including curcumin and quercetin-3-rutinoside (rutin). PDI expression was observed on resting mast cell surfaces, intracellularly, and in the intestines of allergic mice. Furthermore, enhanced secretion of extracellular PDI was observed on mast cell membranes during IgE and antigen activation. Insulin turbidimetric assays demonstrated that curcumin is a potent PDI inhibitor and pre-treatment of mast cells with curcumin or established PDI inhibitors such as bacitracin, rutin or PACMA-31, resulted in the suppression of IgE-mediated activation and the secretion of various cytokines. This was accompanied by decreased mast cell proliferation, FcεRI expression, and mast cell degranulation. Similarly, treatment of allergic BALB/c mice with PACMA-31 attenuated the development of food allergy resulting in decreased allergic diarrhea, mast cell activation, and fewer intestinal mast cells. The production of TH2-specific cytokines was also suppressed. Our observations suggest that PDI catalytic activity is essential in the regulation of mast cell activation, and that its blockade may benefit patients with allergic inflammation.


Assuntos
Antialérgicos/farmacologia , Inibidores Enzimáticos/farmacologia , Hipersensibilidade Alimentar/prevenção & controle , Imunoglobulina E/metabolismo , Intestinos/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Animais , Bacitracina/farmacologia , Degranulação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Curcumina/farmacologia , Citocinas/metabolismo , Diarreia/enzimologia , Diarreia/imunologia , Diarreia/prevenção & controle , Modelos Animais de Doenças , Hipersensibilidade Alimentar/enzimologia , Hipersensibilidade Alimentar/imunologia , Intestinos/enzimologia , Intestinos/imunologia , Mastócitos/enzimologia , Mastócitos/imunologia , Camundongos Endogâmicos BALB C , Ovalbumina , Isomerases de Dissulfetos de Proteínas/metabolismo , Rutina/farmacologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...