Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 10: 783762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295849

RESUMO

The hereditary ataxias are a heterogenous group of disorders with an increasing number of causative genes being described. Due to the clinical and genetic heterogeneity seen in these conditions, the majority of such individuals endure a diagnostic odyssey or remain undiagnosed. Defining the molecular etiology can bring insights into the responsible molecular pathways and eventually the identification of therapeutic targets. Here, we describe the identification of biallelic variants in the GEMIN5 gene among seven unrelated families with nine affected individuals presenting with spastic ataxia and cerebellar atrophy. GEMIN5, an RNA-binding protein, has been shown to regulate transcription and translation machinery. GEMIN5 is a component of small nuclear ribonucleoprotein (snRNP) complexes and helps in the assembly of the spliceosome complexes. We found that biallelic GEMIN5 variants cause structural abnormalities in the encoded protein and reduce expression of snRNP complex proteins in patient cells compared with unaffected controls. Finally, knocking out endogenous Gemin5 in mice caused early embryonic lethality, suggesting that Gemin5 expression is crucial for normal development. Our work further expands on the phenotypic spectrum associated with GEMIN5-related disease and implicates the role of GEMIN5 among patients with spastic ataxia, cerebellar atrophy, and motor predominant developmental delay.

4.
Am J Hum Genet ; 101(3): 451-458, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28886343

RESUMO

The metabotropic glutamate receptor 1 (mGluR1) is abundantly expressed in the mammalian central nervous system, where it regulates intracellular calcium homeostasis in response to excitatory signaling. Here, we describe heterozygous dominant mutations in GRM1, which encodes mGluR1, that are associated with distinct disease phenotypes: gain-of-function missense mutations, linked in two different families to adult-onset cerebellar ataxia, and a de novo truncation mutation resulting in a dominant-negative effect that is associated with juvenile-onset ataxia and intellectual disability. Crucially, the gain-of-function mutations could be pharmacologically modulated in vitro using an existing FDA-approved drug, Nitazoxanide, suggesting a possible avenue for treatment, which is currently unavailable for ataxias.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Mutação de Sentido Incorreto/genética , Receptores de Glutamato Metabotrópico/genética , Ataxias Espinocerebelares/genética , Tiazóis/farmacologia , Antiparasitários/farmacologia , Feminino , Células HEK293 , Humanos , Masculino , Nitrocompostos , Linhagem , Transdução de Sinais/efeitos dos fármacos , Ataxias Espinocerebelares/patologia
5.
Arch Dis Child ; 99(3): 284-90, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24170689

RESUMO

Genetics has been revolutionised by recent technologies. The latest addition to these advances is next-generation sequencing, which is set to transform clinical diagnostics in every branch of medicine. In the research arena this has already been instrumental in identifying hundreds of novel genetic syndromes, making a molecular diagnosis possible for the first time in numerous refractory cases. However, the pace of change has left many clinicians bewildered by new terminology and the implications of next-generation sequencing for their clinical practice. The rapid developments have also left many diagnostic laboratories struggling to implement these new technologies with limited resources. This review explains the basic concepts of next-generation sequencing, gives examples of its role in clinically applied research and examines the challenges of its introduction into clinical practice.


Assuntos
Doenças Genéticas Inatas/genética , Testes Genéticos/métodos , Análise de Sequência de DNA/métodos , Criança , Doenças Genéticas Inatas/diagnóstico , Humanos , Mutação , Polimorfismo Genético
6.
PLoS Genet ; 8(12): e1003074, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23236289

RESUMO

ß-III spectrin is present in the brain and is known to be important in the function of the cerebellum. Heterozygous mutations in SPTBN2, the gene encoding ß-III spectrin, cause Spinocerebellar Ataxia Type 5 (SCA5), an adult-onset, slowly progressive, autosomal-dominant pure cerebellar ataxia. SCA5 is sometimes known as "Lincoln ataxia," because the largest known family is descended from relatives of the United States President Abraham Lincoln. Using targeted capture and next-generation sequencing, we identified a homozygous stop codon in SPTBN2 in a consanguineous family in which childhood developmental ataxia co-segregates with cognitive impairment. The cognitive impairment could result from mutations in a second gene, but further analysis using whole-genome sequencing combined with SNP array analysis did not reveal any evidence of other mutations. We also examined a mouse knockout of ß-III spectrin in which ataxia and progressive degeneration of cerebellar Purkinje cells has been previously reported and found morphological abnormalities in neurons from prefrontal cortex and deficits in object recognition tasks, consistent with the human cognitive phenotype. These data provide the first evidence that ß-III spectrin plays an important role in cortical brain development and cognition, in addition to its function in the cerebellum; and we conclude that cognitive impairment is an integral part of this novel recessive ataxic syndrome, Spectrin-associated Autosomal Recessive Cerebellar Ataxia type 1 (SPARCA1). In addition, the identification of SPARCA1 and normal heterozygous carriers of the stop codon in SPTBN2 provides insights into the mechanism of molecular dominance in SCA5 and demonstrates that the cell-specific repertoire of spectrin subunits underlies a novel group of disorders, the neuronal spectrinopathies, which includes SCA5, SPARCA1, and a form of West syndrome.


Assuntos
Cerebelo , Espectrina/genética , Ataxias Espinocerebelares , Adulto , Animais , Cerebelo/crescimento & desenvolvimento , Cerebelo/patologia , Mapeamento Cromossômico , Transtornos Cognitivos/genética , Humanos , Camundongos , Camundongos Knockout , Mutação , Neurônios/metabolismo , Neurônios/patologia , Células de Purkinje/patologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...