Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Infect Dis ; 23(9): e383-e388, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37150186

RESUMO

Novel data and analyses have had an important role in informing the public health response to the COVID-19 pandemic. Existing surveillance systems were scaled up, and in some instances new systems were developed to meet the challenges posed by the magnitude of the pandemic. We describe the routine and novel data that were used to address urgent public health questions during the pandemic, underscore the challenges in sustainability and equity in data generation, and highlight key lessons learnt for designing scalable data collection systems to support decision making during a public health crisis. As countries emerge from the acute phase of the pandemic, COVID-19 surveillance systems are being scaled down. However, SARS-CoV-2 resurgence remains a threat to global health security; therefore, a minimal cost-effective system needs to remain active that can be rapidly scaled up if necessary. We propose that a retrospective evaluation to identify the cost-benefit profile of the various data streams collected during the pandemic should be on the scientific research agenda.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias/prevenção & controle , Estudos Retrospectivos , Coleta de Dados
2.
Euro Surveill ; 28(16)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37078883

RESUMO

BackgroundThe Epidemic Intelligence from Open Sources (EIOS) system, jointly developed by the World Health Organisation (WHO), the Joint Research Centre (JRC) of the European Commission and various partners, is a web-based platform that facilitate the monitoring of information on public health threats in near real-time from thousands of online sources.AimsTo assess the capacity of the EIOS system to strengthen data collection for neglected diseases of public health importance, and to evaluate the use of EIOS data for improving the understanding of the geographic extents of diseases and their level of risk.MethodsA Bayesian additive regression trees (BART) model was implemented to map the risk of Crimean-Congo haemorrhagic fever (CCHF) occurrence in 52 countries and territories within the European Region between January 2012 and March 2022 using data on CCHF occurrence retrieved from the EIOS system.ResultsThe model found a positive association between all temperature-related variables and the probability of CCHF occurrence, with an increased risk in warmer and drier areas. The highest risk of CCHF was found in the Mediterranean basin and in areas bordering the Black Sea. There was a general decreasing risk trend from south to north across the entire European Region.ConclusionThe study highlights that the information gathered by public health intelligence can be used to build a disease risk map. Internet-based sources could aid in the assessment of new or changing risks and planning effective actions in target areas.


Assuntos
Epidemias , Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Humanos , Febre Hemorrágica da Crimeia/diagnóstico , Febre Hemorrágica da Crimeia/epidemiologia , Doenças Negligenciadas/epidemiologia , Teorema de Bayes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...