Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(23): 23374-23390, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37688780

RESUMO

Diffuse large B-cell lymphoma (DLBCL) remains a formidable diagnosis in need of new treatment paradigms. In this work, we elucidated an opportunity for therapeutic synergy in DLBCL by reactivating tumor protein p53 with a stapled peptide, ATSP-7041, thereby priming cells for apoptosis and enhancing their sensitivity to BCL-2 family modulation with a BH3-mimetic, ABT-263 (navitoclax). While this combination was highly effective at activating apoptosis in DLBCL in vitro, it was highly toxic in vivo, resulting in a prohibitively narrow therapeutic window. We, therefore, developed a targeted nanomedicine delivery platform to maintain the therapeutic potency of this combination while minimizing its toxicity via packaging and targeted delivery of a stapled peptide. We developed a CD19-targeted polymersome using block copolymers of poly(ethylene glycol) disulfide linked to poly(propylene sulfide) (PEG-SS-PPS) for ATSP-7041 delivery into DLBCL cells. Intracellular delivery was optimized in vitro and validated in vivo by using an aggressive human DLBCL xenograft model. Targeted delivery of ATSP-7041 unlocked the ability to systemically cotreat with ABT-263, resulting in delayed tumor growth, prolonged survival, and no overt toxicity. This work demonstrates a proof-of-concept for antigen-specific targeting of polymersome nanomedicines, targeted delivery of a stapled peptide in vivo, and synergistic dual intrinsic apoptotic therapy against DLBCL via direct p53 reactivation and BCL-2 family modulation.


Assuntos
Linfoma Difuso de Grandes Células B , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/uso terapêutico , Preparações Farmacêuticas , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Peptídeos/metabolismo , Apoptose
2.
Proc Natl Acad Sci U S A ; 119(42): e2209044119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36227917

RESUMO

Despite continuing advances in the development of novel cellular-, antibody-, and chemotherapeutic-based strategies to enhance immune reactivity, the presence of regulatory T cells (Treg cells) remains a complicating factor for their clinical efficacy. To overcome dosing limitations and off-target effects from antibody-based Treg cell deletional strategies or small molecule drugging, we investigated the ability of hydrocarbon stapled alpha-helical (SAH) peptides to target FOXP3, the master transcription factor regulator of Treg cell development, maintenance, and suppressive function. Using the crystal structure of the FOXP3 homodimer as a guide, we developed SAHs in the likeness of a portion of the native FOXP3 antiparallel coiled-coil homodimerization domain (SAH-FOXP3) to block this key FOXP3 protein-protein interaction (PPI) through molecular mimicry. We describe the design, synthesis, and biochemical evaluation of single- and double-stapled SAHs covering the entire coiled-coil expanse. We show that lead SAH-FOXP3s bind FOXP3, are cell permeable and nontoxic to T cells, induce dose-dependent transcript and protein level alterations of FOXP3 target genes, impede Treg cell function, and lead to Treg cell gene expression changes in vivo consistent with FOXP3 dysfunction. These results demonstrate a proof of concept for rationally designed FOXP3-directed peptide therapeutics that could be used as approaches to amplify endogenous immune responsiveness.


Assuntos
Fatores de Transcrição Forkhead , Linfócitos T Reguladores , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Peptídeos/metabolismo , Conformação Proteica em alfa-Hélice
3.
Biomacromolecules ; 23(9): 3798-3809, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35969881

RESUMO

A comprehensive study focusing on the influence of the sequence charge pattern on the secondary structure preferences of annealed polyampholytes and their responsiveness to external stimuli is presented. Two sequences are designed composed entirely of ionizable amino acids (charge fraction, f = 1) and an equal number of positive and negative charges (f+ = f- = 0.5) with distinct charge patterns consisting of lysine and glutamic acid monomers. The study reveals that the sequence charge pattern has a significant influence on the secondary structure preferences of polyampholytes at physiological pH. Furthermore, it shows that external stimuli such as pH, ionic strength, and solvent dielectric constant can be used to modulate the secondary structure of the two studied sequences. The observed secondary structure transformations for the two sequences are also substantially different from those determined for uniformly charged homo-polypeptides under matching conditions.


Assuntos
Peptídeos , Peptídeos/química , Estrutura Secundária de Proteína , Solventes
4.
ACS Cent Sci ; 7(8): 1368-1380, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34466656

RESUMO

The COVID-19 pandemic underscores the need for rapid, safe, and effective vaccines. In contrast to some traditional vaccines, nanoparticle-based subunit vaccines are particularly efficient in trafficking antigens to lymph nodes, where they induce potent immune cell activation. Here, we developed a strategy to decorate the surface of oxidation-sensitive polymersomes with multiple copies of the SARS-CoV-2 spike protein receptor-binding domain (RBD) to mimic the physical form of a virus particle. We evaluated the vaccination efficacy of these surface-decorated polymersomes (RBDsurf) in mice compared to RBD-encapsulated polymersomes (RBDencap) and unformulated RBD (RBDfree), using monophosphoryl-lipid-A-encapsulated polymersomes (MPLA PS) as an adjuvant. While all three groups produced high titers of RBD-specific IgG, only RBDsurf elicited a neutralizing antibody response to SARS-CoV-2 comparable to that of human convalescent plasma. Moreover, RBDsurf was the only group to significantly increase the proportion of RBD-specific germinal center B cells in the vaccination-site draining lymph nodes. Both RBDsurf and RBDencap drove similarly robust CD4+ and CD8+ T cell responses that produced multiple Th1-type cytokines. We conclude that a multivalent surface display of spike RBD on polymersomes promotes a potent neutralizing antibody response to SARS-CoV-2, while both antigen formulations promote robust T cell immunity.

5.
bioRxiv ; 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33851166

RESUMO

A diverse portfolio of SARS-CoV-2 vaccine candidates is needed to combat the evolving COVID-19 pandemic. Here, we developed a subunit nanovaccine by conjugating SARS-CoV-2 Spike protein receptor binding domain (RBD) to the surface of oxidation-sensitive polymersomes. We evaluated the humoral and cellular responses of mice immunized with these surface-decorated polymersomes (RBDsurf) compared to RBD-encapsulated polymersomes (RBDencap) and unformulated RBD (RBDfree), using monophosphoryl lipid A-encapsulated polymersomes (MPLA PS) as an adjuvant. While all three groups produced high titers of RBD-specific IgG, only RBDsurf elicited a neutralizing antibody response to SARS-CoV-2 comparable to that of human convalescent plasma. Moreover, RBDsurf was the only group to significantly increase the proportion of RBD-specific germinal center B cells in the vaccination-site draining lymph nodes. Both RBDsurf and RBDencap drove similarly robust CD4+ and CD8+ T cell responses that produced multiple Th1-type cytokines. We conclude that multivalent surface display of Spike RBD on polymersomes promotes a potent neutralizing antibody response to SARS-CoV-2, while both antigen formulations promote robust T cell immunity.

6.
Oncotarget ; 10(58): 6219-6233, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31692812

RESUMO

BCL-2 family proteins are central regulators of apoptosis and represent prime therapeutic targets for overcoming cell death resistance in malignancies. However, plasticity of anti-apoptotic members, such as MCL-1, often allows for a switch in cell death dependency patterns that lie outside the binding profile of targeted BH3-mimetics. Therefore discovery of therapeutics that effectively inactivate all anti-apoptotic members is a high priority. To address this we tested the potency of a hydrocarbon stapled BIM BH3 peptide (BIM SAHB A ) to overcome both BCL-2 and MCL-1 apoptotic resistance given BIM's naturally wide ranging affinity for all BCL-2 family multidomain members. BIM SAHB A effectively killed diffuse large B-cell lymphoma (DLBCL) cell lines regardless of their anti-apoptotic dependence. Despite BIM BH3's ability to bind all BCL-2 anti-apoptotic proteins, BIM SAHB A 's dominant intracellular target was MCL-1 and this specificity was exploited in sequenced combination BH3-mimetic treatments targeting BCL-2, BCL-XL, and BCL-W. Extending this MCL-1 functional dependence, mouse embryonic fibroblasts (MEFs) deficient in MCL-1 were resistant to mitochondrial changes induced by BIM SAHB A . This study demonstrates the importance of understanding BH3 mimetic functional intracellular affinities for optimized use and highlights the diagnostic and therapeutic promise of a BIM BH3 peptide mimetic as a potential MCL-1 inhibitor.

7.
DNA Repair (Amst) ; 82: 102697, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31499327

RESUMO

Homologous recombination deficiency conferred by alterations in BRCA1 or BRCA2 are common in breast tumors and can drive sensitivity to platinum chemotherapy and PARP inhibitors. Alterations in nucleotide excision repair (NER) activity can also impact sensitivity to DNA damaging agents, but NER activity in breast cancer has been poorly characterized. Here, we apply a novel immunofluorescence-based cellular NER assay to screen a large panel of breast epithelial and cancer cell lines. Although the majority of breast cancer models are NER proficient, we identify an example of a breast cancer cell line with profound NER deficiency. We show that NER deficiency in this model is driven by epigenetic silencing of the ERCC4 gene, leading to lack of expression of the NER nuclease XPF, and that ERCC4 methylation is also strongly correlated with ERCC4 mRNA and XPF protein expression in primary breast tumors. Re-expression of XPF in the ERCC4-deficient breast cancer rescues NER deficiency and cisplatin sensitivity, but does not impact PARP inhibitor sensitivity. These findings demonstrate the potential to use functional assays to identify novel mechanisms of DNA repair deficiency and nominate NER deficiency as a platinum sensitivity biomarker in breast cancer.


Assuntos
Neoplasias da Mama/patologia , Reparo do DNA , Linhagem Celular Tumoral , Cisplatino/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Regiões Promotoras Genéticas/genética , Raios Ultravioleta
8.
Materials (Basel) ; 12(16)2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31408950

RESUMO

Therapeutic manipulation of the BCL-2 family using BH3 mimetics is an emerging paradigm in cancer treatment and immune modulation. For example, peptides mimicking the BIM BH3 helix can directly target the full complement of anti- and pro-apoptotic BCL-2 proteins to trigger apoptosis. This study has incorporated the potent BH3 α-helical death domain of BIM into peptide amphiphile (PA) nanostructures designed to facilitate cellular uptake and induce cell death. This study shows that these PA nanostructures are quickly incorporated into cells, are able to specifically bind BCL-2 proteins, are stable at physiologic temperatures and pH, and induce dose-dependent apoptosis in cells. The incorporation of a cathepsin B cleavable linker between the BIM BH3 peptide and the hydrophobic tail resulted in increased intracellular accumulation and mitochondrial co-localization of the BIM BH3 peptide while also improving BCL-2 family member binding and apoptotic reactivation. This PA platform represents a promising new strategy for intracellular therapeutic peptide delivery for the disruption of intracellular protein:protein interactions.

9.
ACS Omega ; 3(10): 14144-14150, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30411059

RESUMO

Despite the therapeutic promise of phospholipid-based nanocarriers, a major obstacle to their widespread clinical translation is a susceptibility to fatty acid ester hydrolysis, leading to lack of quality control and inconsistencies in self-assembly formulations. Using electrospray ionization mass spectrometry fragmentation in combination with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, we have demonstrated a method to detect hydrolysis of one or both of the fatty acid esters in a PEGylated phospholipid, DSPE-PEG, in conditions commonly applied during nanocarrier production. Because such carriers are increasingly being used to deliver peptide-based therapeutics, we further investigated the hydrolysis of phospholipid esters in conditions used for solid-phase peptide synthesis and high-performance liquid chromatography of peptides. We ultimately detail a synthetic strategy to reliably produce pure phospholipid-peptide bioconjugates (peptide amphiphiles), while avoiding unintended or unnoticed hydrolyzed byproducts that could lead to polymorphic nanotherapeutics with dampened therapeutic efficacy. We believe that such an approach could help standardize phospholipid-peptide-based therapeutic development, testing, and clinical translation.

10.
Bioconjug Chem ; 28(9): 2316-2326, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28771332

RESUMO

Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein-protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are two major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a Förster resonance energy transfer (FRET)-based tracking system. Using this platform, we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.


Assuntos
Catepsina B/metabolismo , Peptídeos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Endocitose , Endossomos/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Células HeLa , Humanos , Metabolismo dos Lipídeos , Lipídeos/química , Peptídeos/análise , Mapeamento de Interação de Proteínas/métodos , Transporte Proteico , Proteólise , Tensoativos/química , Tensoativos/metabolismo , Proteína Supressora de Tumor p53/análise
11.
Adv Drug Deliv Rev ; 110-111: 65-79, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27535485

RESUMO

Peptides and peptide-conjugates, comprising natural and synthetic building blocks, are an increasingly popular class of biomaterials. Self-assembled nanostructures based on peptides and peptide-conjugates offer advantages such as precise selectivity and multifunctionality that can address challenges and limitations in the clinic. In this review article, we discuss recent developments in the design and self-assembly of various nanomaterials based on peptides and peptide-conjugates for medical applications, and categorize them into two themes based on the driving forces of molecular self-assembly. First, we present the self-assembled nanostructures driven by the supramolecular interactions between the peptides, with or without the presence of conjugates. The studies where nanoassembly is driven by the interactions between the conjugates of peptide-conjugates are then presented. Particular emphasis is given to in vivo studies focusing on therapeutics, diagnostics, immune modulation and regenerative medicine. Finally, challenges and future perspectives are presented.


Assuntos
Peptídeos/química , Peptídeos/uso terapêutico , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Desenho de Fármacos , Humanos , Nanoestruturas/química , Peptídeos/síntese química , Peptídeos/imunologia , Medicina Regenerativa
12.
PLoS One ; 9(1): e85896, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489677

RESUMO

Because cells are constantly subjected to DNA damaging insults, DNA repair pathways are critical for genome integrity [1]. DNA damage recognition protein complexes (DRCs) recognize DNA damage and initiate DNA repair. The DNA-Damage Binding protein 2 (DDB2) complex is a DRC that initiates nucleotide excision repair (NER) of DNA damage caused by ultraviolet light (UV) [2]-[4]. Using a purified DDB2 DRC, we created a probe ("DDB2 proteo-probe") that hybridizes to nuclei of cells irradiated with UV and not to cells exposed to other genotoxins. The DDB2 proteo-probe recognized UV-irradiated DNA in classical laboratory assays, including cyto- and histo-chemistry, flow cytometry, and slot-blotting. When immobilized, the proteo-probe also bound soluble UV-irradiated DNA in ELISA-like and DNA pull-down assays. In vitro, the DDB2 proteo-probe preferentially bound 6-4-photoproducts [(6-4)PPs] rather than cyclobutane pyrimidine dimers (CPDs). We followed UV-damage repair by cyto-chemistry in cells fixed at different time after UV irradiation, using either the DDB2 proteo-probe or antibodies against CPDs, or (6-4)PPs. The signals obtained with the DDB2 proteo-probe and with the antibody against (6-4)PPs decreased in a nearly identical manner. Since (6-4)PPs are repaired only by nucleotide excision repair (NER), our results strongly suggest the DDB2 proteo-probe hybridizes to DNA containing (6-4)PPs and allows monitoring of their removal during NER. We discuss the general use of purified DRCs as probes, in lieu of antibodies, to recognize and monitor DNA damage and repair.


Assuntos
Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Raios Ultravioleta , Linhagem Celular , Dano ao DNA/genética , Reparo do DNA/genética , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Dímeros de Pirimidina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...