Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cancer Immunol Res ; 4(12): 1072-1087, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27856424

RESUMO

Cancer immunotherapies hold much promise, but their potential in veterinary settings has not yet been fully appreciated. Canine lymphomas are among the most common tumors of dogs and bear remarkable similarity to human disease. In this study, we examined the combination of CD47 blockade with anti-CD20 passive immunotherapy for canine lymphoma. The CD47/SIRPα axis is an immune checkpoint that regulates macrophage activation. In humans, CD47 is expressed on cancer cells and enables evasion from phagocytosis. CD47-blocking therapies are now under investigation in clinical trials for a variety of human cancers. We found the canine CD47/SIRPα axis to be conserved biochemically and functionally. We identified high-affinity SIRPα variants that antagonize canine CD47 and stimulate phagocytosis of canine cancer cells in vitro When tested as Fc fusion proteins, these therapeutic agents exhibited single-agent efficacy in a mouse xenograft model of canine lymphoma. As robust synergy between CD47 blockade and tumor-specific antibodies has been demonstrated for human cancer, we evaluated the combination of CD47 blockade with 1E4-cIgGB, a canine-specific antibody to CD20. 1E4-cIgGB could elicit a therapeutic response against canine lymphoma in vivo as a single agent. However, augmented responses were observed when combined with CD47-blocking therapies, resulting in synergy in vitro and in vivo and eliciting cures in 100% of mice bearing canine lymphoma. Our findings support further testing of CD47-blocking therapies alone and in combination with CD20 antibodies in the veterinary setting. Cancer Immunol Res; 4(12); 1072-87. ©2016 AACR.


Assuntos
Antígenos CD20/imunologia , Antígeno CD47/imunologia , Imunoterapia , Linfoma Difuso de Grandes Células B/terapia , Animais , Linhagem Celular Tumoral , Cães , Feminino , Imunoglobulina G/uso terapêutico , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/veterinária , Macrófagos/imunologia , Masculino , Camundongos , Fagocitose , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Microbiol Spectr ; 4(5)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27763252

RESUMO

The hematopoietic stem cell (HSC) is a multipotent stem cell that resides in the bone marrow and has the ability to form all of the cells of the blood and immune system. Since its first purification in 1988, additional studies have refined the phenotype and functionality of HSCs and characterized all of their downstream progeny. The hematopoietic lineage is divided into two main branches: the myeloid and lymphoid arms. The myeloid arm is characterized by the common myeloid progenitor and all of its resulting cell types. The stages of hematopoiesis have been defined in both mice and humans. During embryological development, the earliest hematopoiesis takes place in yolk sac blood islands and then migrates to the fetal liver and hematopoietic organs. Some adult myeloid populations develop directly from yolk sac progenitors without apparent bone marrow intermediates, such as tissue-resident macrophages. Hematopoiesis also changes over time, with a bias of the dominating HSCs toward myeloid development as animals age. Defects in myelopoiesis contribute to many hematologic disorders, and some of these can be overcome with therapies that target the aberrant stage of development. Furthermore, insights into myeloid development have informed us of mechanisms of programmed cell removal. The CD47/SIRPα axis, a myeloid-specific immune checkpoint, limits macrophage removal of HSCs but can be exploited by hematologic and solid malignancies. Therapeutics targeting CD47 represent a new strategy for treating cancer. Overall, an understanding of hematopoiesis and myeloid cell development has implications for regenerative medicine, hematopoietic cell transplantation, malignancy, and many other diseases.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células Mieloides/citologia , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula , Humanos
4.
J Clin Invest ; 126(7): 2610-20, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27294525

RESUMO

Small-cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer with limited treatment options. CD47 is a cell-surface molecule that promotes immune evasion by engaging signal-regulatory protein alpha (SIRPα), which serves as an inhibitory receptor on macrophages. Here, we found that CD47 is highly expressed on the surface of human SCLC cells; therefore, we investigated CD47-blocking immunotherapies as a potential approach for SCLC treatment. Disruption of the interaction of CD47 with SIRPα using anti-CD47 antibodies induced macrophage-mediated phagocytosis of human SCLC patient cells in culture. In a murine model, administration of CD47-blocking antibodies or targeted inactivation of the Cd47 gene markedly inhibited SCLC tumor growth. Furthermore, using comprehensive antibody arrays, we identified several possible therapeutic targets on the surface of SCLC cells. Antibodies to these targets, including CD56/neural cell adhesion molecule (NCAM), promoted phagocytosis in human SCLC cell lines that was enhanced when combined with CD47-blocking therapies. In light of recent clinical trials for CD47-blocking therapies in cancer treatment, these findings identify disruption of the CD47/SIRPα axis as a potential immunotherapeutic strategy for SCLC. This approach could enable personalized immunotherapeutic regimens in patients with SCLC and other cancers.


Assuntos
Antígeno CD47/metabolismo , Imunoterapia/métodos , Neoplasias Pulmonares/terapia , Macrófagos/imunologia , Carcinoma de Pequenas Células do Pulmão/terapia , Animais , Anticorpos Monoclonais/farmacologia , Antígeno CD56/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Neoplasias Pulmonares/imunologia , Camundongos , Fagocitose , Receptores Imunológicos/metabolismo , Transdução de Sinais , Carcinoma de Pequenas Células do Pulmão/imunologia
5.
Proc Natl Acad Sci U S A ; 113(16): 4464-9, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27035983

RESUMO

Pancreatic neuroendocrine tumors (PanNETs) are a type of pancreatic cancer with limited therapeutic options. Consequently, most patients with advanced disease die from tumor progression. Current evidence indicates that a subset of cancer cells is responsible for tumor development, metastasis, and recurrence, and targeting these tumor-initiating cells is necessary to eradicate tumors. However, tumor-initiating cells and the biological processes that promote pathogenesis remain largely uncharacterized in PanNETs. Here we profile primary and metastatic tumors from an index patient and demonstrate that MET proto-oncogene activation is important for tumor growth in PanNET xenograft models. We identify a highly tumorigenic cell population within several independent surgically acquired PanNETs characterized by increased cell-surface protein CD90 expression and aldehyde dehydrogenase A1 (ALDHA1) activity, and provide in vitro and in vivo evidence for their stem-like properties. We performed proteomic profiling of 332 antigens in two cell lines and four primary tumors, and showed that CD47, a cell-surface protein that acts as a "don't eat me" signal co-opted by cancers to evade innate immune surveillance, is ubiquitously expressed. Moreover, CD47 coexpresses with MET and is enriched in CD90(hi)cells. Furthermore, blocking CD47 signaling promotes engulfment of tumor cells by macrophages in vitro and inhibits xenograft tumor growth, prevents metastases, and prolongs survival in vivo.


Assuntos
Tumores Neuroendócrinos , Neoplasias Pancreáticas , Evasão Tumoral , Família Aldeído Desidrogenase 1 , Animais , Antígeno CD47/imunologia , Feminino , Humanos , Isoenzimas/imunologia , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Proteínas de Neoplasias/imunologia , Tumores Neuroendócrinos/imunologia , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/terapia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Proto-Oncogene Mas , Retinal Desidrogenase/imunologia , Antígenos Thy-1/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Oncoimmunology ; 2(9): e25773, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24319639

RESUMO

CD47 transduces inhibitory signals through signal-regulatory protein α (SIRPα), a plasma membrane receptor expressed by macrophages. Many cancers upregulate CD47 to evade immunosurveillance. We have recently engineered SIRPα variants that potently antagonize CD47 for use as anticancer immunotherapeutics. These high-affinity SIRPα variants synergize with antineoplastic antibodies by lowering the threshold for macrophage-mediated destruction of malignant cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...