Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(10): 5637-5653, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34048580

RESUMO

Telomere repeat-containing RNA (TERRA) has been identified in multiple organisms including Trypanosoma brucei, a protozoan parasite that causes human African trypanosomiasis. T. brucei regularly switches its major surface antigen, VSG, to evade the host immune response. VSG is expressed exclusively from subtelomeric expression sites, and we have shown that telomere proteins play important roles in the regulation of VSG silencing and switching. In this study, we identify several unique features of TERRA and telomere biology in T. brucei. First, the number of TERRA foci is cell cycle-regulated and influenced by TbTRF, the duplex telomere DNA binding factor in T. brucei. Second, TERRA is transcribed by RNA polymerase I mainly from a single telomere downstream of the active VSG. Third, TbTRF binds TERRA through its C-terminal Myb domain, which also has the duplex DNA binding activity, in a sequence-specific manner and suppresses the TERRA level without affecting its half-life. Finally, levels of the telomeric R-loop and telomere DNA damage were increased upon TbTRF depletion. Overexpression of an ectopic allele of RNase H1 that resolves the R-loop structure in TbTRF RNAi cells can partially suppress these phenotypes, revealing an underlying mechanism of how TbTRF helps maintain telomere integrity.


Assuntos
RNA Longo não Codificante/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/parasitologia , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
2.
Bioorg Med Chem ; 27(8): 1517-1528, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30833159

RESUMO

Previously synthesized tubulin inhibitors showed promising in vitro selectivity and activity against Human African Trypanosomiasis. Current aim is to improve the ligand efficiency and reduce overall hydrophobicity of the compounds, by lead optimization. Via combinatorial chemistry, 60 new analogs were synthesized. For biological assay Trypanosoma brucei brucei Lister 427 cell line were used as the parasite model and for the host model human embryonic kidney cell line HEK-293 and mouse macrophage cell line RAW 264.7 were used to test efficacy. Of the newly synthesized compounds 5, 39, 40, and 57 exhibited IC50s below 5 µM inhibiting the growth of trypanosome cells and not harming the mammalian cells at equipotent concentration. Comparably, the newly synthesized compounds have a reduced amount of aromatic moieties resulting in a decrease in molecular weight. Due to importance of tubulin polymerization during protozoan life cycle its activity was assessed by western blot analyses. Our results indicated that compound 5 had a profound effect on tubulin function. A detailed structure activity relationship (SAR) was summarized that will be used to guide future lead optimization.


Assuntos
Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia , Animais , Desenho de Fármacos , Descoberta de Drogas , Células HEK293 , Humanos , Camundongos , Células RAW 264.7 , Tripanossomíase Africana/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...