Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(9): 113074, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676766

RESUMO

To produce a diverse antibody repertoire, immunoglobulin heavy-chain (Igh) loci undergo large-scale alterations in structure to facilitate juxtaposition and recombination of spatially separated variable (VH), diversity (DH), and joining (JH) genes. These chromosomal alterations are poorly understood. Uncovering their patterns shows how chromosome dynamics underpins antibody diversity. Using tiled Capture Hi-C, we produce a comprehensive map of chromatin interactions throughout the 2.8-Mb Igh locus in progenitor B cells. We find that the Igh locus folds into semi-rigid subdomains and undergoes flexible looping of the VH genes to its 3' end, reconciling two views of locus organization. Deconvolution of single Igh locus conformations using polymer simulations identifies thousands of different structures. This heterogeneity may underpin the diversity of V(D)J recombination events. All three immunoglobulin loci also participate in a highly specific, developmentally regulated network of interchromosomal interactions with genes encoding B cell-lineage factors. This suggests a model of interchromosomal coordination of B cell development.


Assuntos
Linfócitos B , Imunoglobulinas , Recombinação V(D)J/genética , Genes de Cadeia Pesada de Imunoglobulina/genética , Células Precursoras de Linfócitos B
2.
Genome Biol ; 24(1): 40, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869353

RESUMO

BACKGROUND: There is widespread interest in the three-dimensional chromatin conformation of the genome and its impact on gene expression. However, these studies frequently do not consider parent-of-origin differences, such as genomic imprinting, which result in monoallelic expression. In addition, genome-wide allele-specific chromatin conformation associations have not been extensively explored. There are few accessible bioinformatic workflows for investigating allelic conformation differences and these require pre-phased haplotypes which are not widely available. RESULTS: We developed a bioinformatic pipeline, "HiCFlow," that performs haplotype assembly and visualization of parental chromatin architecture. We benchmarked the pipeline using prototype haplotype phased Hi-C data from GM12878 cells at three disease-associated imprinted gene clusters. Using Region Capture Hi-C and Hi-C data from human cell lines (1-7HB2, IMR-90, and H1-hESCs), we can robustly identify the known stable allele-specific interactions at the IGF2-H19 locus. Other imprinted loci (DLK1 and SNRPN) are more variable and there is no "canonical imprinted 3D structure," but we could detect allele-specific differences in A/B compartmentalization. Genome-wide, when topologically associating domains (TADs) are unbiasedly ranked according to their allele-specific contact frequencies, a set of allele-specific TADs could be defined. These occur in genomic regions of high sequence variation. In addition to imprinted genes, allele-specific TADs are also enriched for allele-specific expressed genes. We find loci that have not previously been identified as allele-specific expressed genes such as the bitter taste receptors (TAS2Rs). CONCLUSIONS: This study highlights the widespread differences in chromatin conformation between heterozygous loci and provides a new framework for understanding allele-specific expressed genes.


Assuntos
Genoma Humano , Impressão Genômica , Família Multigênica , Humanos , Alelos , Cromatina
3.
Front Cell Dev Biol ; 10: 995388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340032

RESUMO

Genome sequencing has revealed over 300 million genetic variations in human populations. Over 90% of variants are single nucleotide polymorphisms (SNPs), the remainder include short deletions or insertions, and small numbers of structural variants. Hundreds of thousands of these variants have been associated with specific phenotypic traits and diseases through genome wide association studies which link significant differences in variant frequencies with specific phenotypes among large groups of individuals. Only 5% of disease-associated SNPs are located in gene coding sequences, with the potential to disrupt gene expression or alter of the function of encoded proteins. The remaining 95% of disease-associated SNPs are located in non-coding DNA sequences which make up 98% of the genome. The role of non-coding, disease-associated SNPs, many of which are located at considerable distances from any gene, was at first a mystery until the discovery that gene promoters regularly interact with distal regulatory elements to control gene expression. Disease-associated SNPs are enriched at the millions of gene regulatory elements that are dispersed throughout the non-coding sequences of the genome, suggesting they function as gene regulation variants. Assigning specific regulatory elements to the genes they control is not straightforward since they can be millions of base pairs apart. In this review we describe how understanding 3D genome organization can identify specific interactions between gene promoters and distal regulatory elements and how 3D genomics can link disease-associated SNPs to their target genes. Understanding which gene or genes contribute to a specific disease is the first step in designing rational therapeutic interventions.

4.
Nat Aging ; 2(1): 31-45, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-37118356

RESUMO

Senescence is a fate-determined state, accompanied by reorganization of heterochromatin. Although lineage-appropriate genes can be temporarily repressed through facultative heterochromatin, stable silencing of lineage-inappropriate genes often involves the constitutive heterochromatic mark, histone H3 lysine 9 trimethylation (H3K9me3). The fate of these heterochromatic genes during senescence is unclear. In the present study, we show that a small number of lineage-inappropriate genes, exemplified by the LCE2 skin genes, are derepressed during senescence from H3K9me3 regions in fibroblasts. DNA FISH experiments reveal that these gene loci, which are condensed at the nuclear periphery in proliferative cells, are decompacted during senescence. Decompaction of the locus is not sufficient for LCE2 expression, which requires p53 and C/EBPß signaling. NLRP3, which is predominantly expressed in macrophages from an open topologically associated domain (TAD), is also derepressed in senescent fibroblasts due to the local disruption of the H3K9me3-rich TAD that contains it. NLRP3 has been implicated in the amplification of inflammatory cytokine signaling in senescence and aging, highlighting the functional relevance of gene induction from 'permissive' H3K9me3 regions in senescent cells.


Assuntos
Heterocromatina , Histonas , Heterocromatina/genética , Histonas/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Senescência Celular/genética , Expressão Gênica
5.
Sex Dev ; 15(5-6): 317-334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34710870

RESUMO

Sex determination is the process by which an initial bipotential gonad adopts either a testicular or ovarian cell fate. The inability to properly complete this process leads to a group of developmental disorders classified as disorders of sex development (DSD). To date, dozens of genes were shown to play roles in mammalian sex determination, and mutations in these genes can cause DSD in humans or gonadal sex reversal/dysfunction in mice. However, exome sequencing currently provides genetic diagnosis for only less than half of DSD patients. This points towards a major role for the non-coding genome during sex determination. In this review, we highlight recent advances in our understanding of non-coding, cis-acting gene regulatory elements and discuss how they may control transcriptional programmes that underpin sex determination in the context of the 3-dimensional folding of chromatin. As a paradigm, we focus on the Sox9 gene, a prominent pro-male factor and one of the most extensively studied genes in gonadal cell fate determination.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Gônadas , Processos de Determinação Sexual , Animais , Transtornos do Desenvolvimento Sexual/genética , Feminino , Gônadas/crescimento & desenvolvimento , Humanos , Masculino , Mamíferos/genética , Camundongos , Ovário , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição SOX9/genética , Processos de Determinação Sexual/genética , Testículo
6.
PLoS Pathog ; 17(8): e1009875, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34432858

RESUMO

Development of cervical cancer is directly associated with integration of human papillomavirus (HPV) genomes into host chromosomes and subsequent modulation of HPV oncogene expression, which correlates with multi-layered epigenetic changes at the integrated HPV genomes. However, the process of integration itself and dysregulation of host gene expression at sites of integration in our model of HPV16 integrant clone natural selection has remained enigmatic. We now show, using a state-of-the-art 'HPV integrated site capture' (HISC) technique, that integration likely occurs through microhomology-mediated repair (MHMR) mechanisms via either a direct process, resulting in host sequence deletion (in our case, partially homozygously) or via a 'looping' mechanism by which flanking host regions become amplified. Furthermore, using our 'HPV16-specific Region Capture Hi-C' technique, we have determined that chromatin interactions between the integrated virus genome and host chromosomes, both at short- (<500 kbp) and long-range (>500 kbp), appear to drive local host gene dysregulation through the disruption of host:host interactions within (but not exceeding) host structures known as topologically associating domains (TADs). This mechanism of HPV-induced host gene expression modulation indicates that integration of virus genomes near to or within a 'cancer-causing gene' is not essential to influence their expression and that these modifications to genome interactions could have a major role in selection of HPV integrants at the early stage of cervical neoplastic progression.


Assuntos
Carcinogênese/patologia , Cromatina/metabolismo , Genoma Viral , Papillomavirus Humano 16/isolamento & purificação , Infecções por Papillomavirus/complicações , Neoplasias do Colo do Útero/patologia , Integração Viral , Carcinogênese/metabolismo , Cromatina/genética , Epigênese Genética , Feminino , Humanos , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia
7.
Nat Commun ; 12(1): 2098, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828098

RESUMO

The transition from naive to primed pluripotency is accompanied by an extensive reorganisation of transcriptional and epigenetic programmes. However, the role of transcriptional enhancers and three-dimensional chromatin organisation in coordinating these developmental programmes remains incompletely understood. Here, we generate a high-resolution atlas of gene regulatory interactions, chromatin profiles and transcription factor occupancy in naive and primed human pluripotent stem cells, and develop a network-graph approach to examine the atlas at multiple spatial scales. We uncover highly connected promoter hubs that change substantially in interaction frequency and in transcriptional co-regulation between pluripotent states. Small hubs frequently merge to form larger networks in primed cells, often linked by newly-formed Polycomb-associated interactions. We identify widespread state-specific differences in enhancer activity and interactivity that correspond with an extensive reconfiguration of OCT4, SOX2 and NANOG binding and target gene expression. These findings provide multilayered insights into the chromatin-based gene regulatory control of human pluripotent states.


Assuntos
Regulação da Expressão Gênica , Células-Tronco Pluripotentes/metabolismo , Cromatina/metabolismo , Metilação de DNA , Elementos Facilitadores Genéticos , Humanos , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo
8.
Biotechnol Bioeng ; 118(2): 784-796, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33095445

RESUMO

Chinese hamster ovary (CHO) cell lines are the pillars of a multibillion-dollar biopharmaceutical industry producing recombinant therapeutic proteins. The effects of local chromatin organization and epigenetic repression within these cell lines result in unpredictable and unstable transgene expression following random integration. Limited knowledge of the CHO genome and its higher order chromatin organization has thus far impeded functional genomics approaches required to tackle these issues. Here, we present an integrative three-dimensional (3D) map of genome organization within the CHOK1SV® 10E9 cell line in conjunction with an improved, less fragmented CHOK1SV 10E9 genome assembly. Using our high-resolution chromatin conformation datasets, we have assigned ≈90% of sequence to a chromosome-scale genome assembly. Our genome-wide 3D map identifies higher order chromatin structures such as topologically associated domains, incorporates our chromatin accessibility data to enhance the identification of active cis-regulatory elements, and importantly links these cis-regulatory elements to target promoters in a 3D promoter interactome. We demonstrate the power of our improved functional annotation by evaluating the 3D landscape of a transgene integration site and two phenotypically different cell lines. Our work opens up further novel genome engineering targets, has the potential to inform vital improvements for industrial biotherapeutic production, and represents a significant advancement for CHO cell line development.


Assuntos
Mapeamento Cromossômico , Genoma , Regiões Promotoras Genéticas , Transgenes , Animais , Células CHO , Cromatina , Cricetulus , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
9.
Nat Commun ; 11(1): 6049, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247104

RESUMO

Senescence is a state of stable proliferative arrest, generally accompanied by the senescence-associated secretory phenotype, which modulates tissue homeostasis. Enhancer-promoter interactions, facilitated by chromatin loops, play a key role in gene regulation but their relevance in senescence remains elusive. Here, we use Hi-C to show that oncogenic RAS-induced senescence in human diploid fibroblasts is accompanied by extensive enhancer-promoter rewiring, which is closely connected with dynamic cohesin binding to the genome. We find de novo cohesin peaks often at the 3' end of a subset of active genes. RAS-induced de novo cohesin peaks are transcription-dependent and enriched for senescence-associated genes, exemplified by IL1B, where de novo cohesin binding is involved in new loop formation. Similar IL1B induction with de novo cohesin appearance and new loop formation are observed in terminally differentiated macrophages, but not TNFα-treated cells. These results suggest that RAS-induced senescence represents a cell fate determination-like process characterised by a unique gene expression profile and 3D genome folding signature, mediated in part through cohesin redistribution on chromatin.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Senescência Celular/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Transcrição Gênica , Fator de Ligação a CCCTC/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Loci Gênicos , Genoma , Humanos , Interleucina-1/genética , Macrófagos/citologia , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Proteínas ras/metabolismo , Coesinas
10.
Cell Rep ; 32(3): 107929, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32698000

RESUMO

It is currently assumed that 3D chromosomal organization plays a central role in transcriptional control. However, depletion of cohesin and CTCF affects the steady-state levels of only a minority of transcripts. Here, we use high-resolution Capture Hi-C to interrogate the dynamics of chromosomal contacts of all annotated human gene promoters upon degradation of cohesin and CTCF. We show that a majority of promoter-anchored contacts are lost in these conditions, but many contacts with distinct properties are maintained, and some new ones are gained. The rewiring of contacts between promoters and active enhancers upon cohesin degradation associates with rapid changes in target gene transcription as detected by SLAM sequencing (SLAM-seq). These results provide a mechanistic explanation for the limited, but consistent, effects of cohesin and CTCF depletion on steady-state transcription and suggest the existence of both cohesin-dependent and -independent mechanisms of enhancer-promoter pairing.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , Elementos Facilitadores Genéticos/genética , Regiões Promotoras Genéticas , Cromatina , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Células HeLa , Humanos , Transcrição Gênica , Coesinas
11.
Elife ; 92020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32065581

RESUMO

Eukaryotic genomes are folded into loops. It is thought that these are formed by cohesin complexes via extrusion, either until loop expansion is arrested by CTCF or until cohesin is removed from DNA by WAPL. Although WAPL limits cohesin's chromatin residence time to minutes, it has been reported that some loops exist for hours. How these loops can persist is unknown. We show that during G1-phase, mammalian cells contain acetylated cohesinSTAG1 which binds chromatin for hours, whereas cohesinSTAG2 binds chromatin for minutes. Our results indicate that CTCF and the acetyltransferase ESCO1 protect a subset of cohesinSTAG1 complexes from WAPL, thereby enable formation of long and presumably long-lived loops, and that ESCO1, like CTCF, contributes to boundary formation in chromatin looping. Our data are consistent with a model of nested loop extrusion, in which acetylated cohesinSTAG1 forms stable loops between CTCF sites, demarcating the boundaries of more transient cohesinSTAG2 extrusion activity.


Assuntos
Acetiltransferases/fisiologia , Fator de Ligação a CCCTC/fisiologia , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Acetilação , Proteínas de Transporte/genética , Simulação por Computador , Fase G1 , Genoma Humano , Humanos , Proteínas Nucleares/genética , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Coesinas
12.
Nat Rev Genet ; 20(8): 437-455, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31086298

RESUMO

Spatiotemporal gene expression programmes are orchestrated by transcriptional enhancers, which are key regulatory DNA elements that engage in physical contacts with their target-gene promoters, often bridging considerable genomic distances. Recent progress in genomics, genome editing and microscopy methodologies have enabled the genome-wide mapping of enhancer-promoter contacts and their functional dissection. In this Review, we discuss novel concepts on how enhancer-promoter interactions are established and maintained, how the 3D architecture of mammalian genomes both facilitates and constrains enhancer-promoter contacts, and the role they play in gene expression control during normal development and disease.


Assuntos
Elementos Facilitadores Genéticos/genética , Expressão Gênica/genética , Genoma/genética , Regiões Promotoras Genéticas/genética , Animais , Edição de Genes/métodos , Genômica/métodos , Humanos , Mamíferos/genética
13.
Nat Commun ; 9(1): 4189, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305613

RESUMO

The establishment of the embryonic and trophoblast lineages is a developmental decision underpinned by dramatic differences in the epigenetic landscape of the two compartments. However, it remains unknown how epigenetic information and transcription factor networks map to the 3D arrangement of the genome, which in turn may mediate transcriptional divergence between the two cell lineages. Here, we perform promoter capture Hi-C experiments in mouse trophoblast (TSC) and embryonic (ESC) stem cells to understand how chromatin conformation relates to cell-specific transcriptional programmes. We find that key TSC genes that are kept repressed in ESCs exhibit interactions between H3K27me3-marked regions in ESCs that depend on Polycomb repressive complex 1. Interactions that are prominent in TSCs are enriched for enhancer-gene contacts involving key TSC transcription factors, as well as TET1, which helps to maintain the expression of TSC-relevant genes. Our work shows that the first developmental cell fate decision results in distinct chromatin conformation patterns establishing lineage-specific contexts involving both repressive and active interactions.


Assuntos
Linhagem da Célula , Cromatina/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/citologia , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Histonas/metabolismo , Lisina/metabolismo , Metilação , Camundongos , Camundongos Endogâmicos ICR , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
14.
Genome Biol ; 19(1): 126, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30180872

RESUMO

BACKGROUND: Aging is characterized by loss of function of the adaptive immune system, but the underlying causes are poorly understood. To assess the molecular effects of aging on B cell development, we profiled gene expression and chromatin features genome-wide, including histone modifications and chromosome conformation, in bone marrow pro-B and pre-B cells from young and aged mice. RESULTS: Our analysis reveals that the expression levels of most genes are generally preserved in B cell precursors isolated from aged compared with young mice. Nonetheless, age-specific expression changes are observed at numerous genes, including microRNA encoding genes. Importantly, these changes are underpinned by multi-layered alterations in chromatin structure, including chromatin accessibility, histone modifications, long-range promoter interactions, and nuclear compartmentalization. Previous work has shown that differentiation is linked to changes in promoter-regulatory element interactions. We find that aging in B cell precursors is accompanied by rewiring of such interactions. We identify transcriptional downregulation of components of the insulin-like growth factor signaling pathway, in particular downregulation of Irs1 and upregulation of Let-7 microRNA expression, as a signature of the aged phenotype. These changes in expression are associated with specific alterations in H3K27me3 occupancy, suggesting that Polycomb-mediated repression plays a role in precursor B cell aging. CONCLUSIONS: Changes in chromatin and 3D genome organization play an important role in shaping the altered gene expression profile of aged precursor B cells. Components of the insulin-like growth factor signaling pathways are key targets of epigenetic regulation in aging in bone marrow B cell precursors.


Assuntos
Envelhecimento/genética , Linfócitos B/metabolismo , Cromatina/química , Epigênese Genética , Somatomedinas/fisiologia , Transcriptoma , Envelhecimento/imunologia , Animais , Linfócitos B/imunologia , Regulação para Baixo , Genoma , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais/genética , Células-Tronco/imunologia , Células-Tronco/metabolismo
15.
J Vis Exp ; (136)2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-30010637

RESUMO

The three-dimensional organization of the genome is linked to its function. For example, regulatory elements such as transcriptional enhancers control the spatio-temporal expression of their target genes through physical contact, often bridging considerable (in some cases hundreds of kilobases) genomic distances and bypassing nearby genes. The human genome harbors an estimated one million enhancers, the vast majority of which have unknown gene targets. Assigning distal regulatory regions to their target genes is thus crucial to understand gene expression control. We developed Promoter Capture Hi-C (PCHi-C) to enable the genome-wide detection of distal promoter-interacting regions (PIRs), for all promoters in a single experiment. In PCHi-C, highly complex Hi-C libraries are specifically enriched for promoter sequences through in-solution hybrid selection with thousands of biotinylated RNA baits complementary to the ends of all promoter-containing restriction fragments. The aim is to then pull-down promoter sequences and their frequent interaction partners such as enhancers and other potential regulatory elements. After high-throughput paired-end sequencing, a statistical test is applied to each promoter-ligated restriction fragment to identify significant PIRs at the restriction fragment level. We have used PCHi-C to generate an atlas of long-range promoter interactions in dozens of human and mouse cell types. These promoter interactome maps have contributed to a greater understanding of mammalian gene expression control by assigning putative regulatory regions to their target genes and revealing preferential spatial promoter-promoter interaction networks. This information also has high relevance to understanding human genetic disease and the identification of potential disease genes, by linking non-coding disease-associated sequence variants in or near control sequences to their target genes.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Humanos , Camundongos , Regiões Promotoras Genéticas/genética
16.
Cell Rep ; 22(10): 2615-2627, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29514091

RESUMO

Transcriptional enhancers, including super-enhancers (SEs), form physical interactions with promoters to regulate cell-type-specific gene expression. SEs are characterized by high transcription factor occupancy and large domains of active chromatin, and they are commonly assigned to target promoters using computational predictions. How promoter-SE interactions change upon cell state transitions, and whether transcription factors maintain SE interactions, have not been reported. Here, we used promoter-capture Hi-C to identify promoters that interact with SEs in mouse embryonic stem cells (ESCs). We found that SEs form complex, spatial networks in which individual SEs contact multiple promoters, and a rewiring of promoter-SE interactions occurs between pluripotent states. We also show that long-range promoter-SE interactions are more prevalent in ESCs than in epiblast stem cells (EpiSCs) or Nanog-deficient ESCs. We conclude that SEs form cell-type-specific interaction networks that are partly dependent on core transcription factors, thereby providing insights into the gene regulatory organization of pluripotent cells.


Assuntos
Diferenciação Celular , Elementos Facilitadores Genéticos/genética , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular/genética , Redes Reguladoras de Genes , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Camundongos , Proteína Homeobox Nanog/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica
17.
Genome Res ; 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29429976

RESUMO

Thrombopoietin (TPO) is a critical cytokine regulating hematopoietic stem cell maintenance and differentiation into the megakaryocytic lineage. However, the transcriptional and chromatin dynamics elicited by TPO signaling are poorly understood. Here, we study the immediate early transcriptional and cis-regulatory responses to TPO in hematopoietic stem/progenitor cells (HSPCs) and use this paradigm of cytokine signaling to chromatin to dissect the relation between cis- regulatory activity and chromatin architecture. We show that TPO profoundly alters the transcriptome of HSPCs, with key hematopoietic regulators being transcriptionally repressed within 30 minutes of TPO. By examining cis-regulatory dynamics and chromatin architectures, we demonstrate that these changes are accompanied by rapid and extensive epigenome remodeling of cis-regulatory landscapes that is spatially coordinated within topologically associating domains (TADs). Moreover, TPO-responsive enhancers are spatially clustered and engage in preferential homotypic intra- and inter-TAD interactions that are largely refractory to TPO signaling. By further examining the link between cis-regulatory dynamics and chromatin looping, we show that rapid modulation of cis-regulatory activity is largely independent of chromatin looping dynamics. Finally, we show that, although activated and repressed cis-regulatory elements share remarkably similar DNA sequence compositions, transcription factor binding patterns accurately predict rapid cis-regulatory responses to TPO.

18.
EMBO J ; 36(24): 3573-3599, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29217591

RESUMO

Mammalian genomes are spatially organized into compartments, topologically associating domains (TADs), and loops to facilitate gene regulation and other chromosomal functions. How compartments, TADs, and loops are generated is unknown. It has been proposed that cohesin forms TADs and loops by extruding chromatin loops until it encounters CTCF, but direct evidence for this hypothesis is missing. Here, we show that cohesin suppresses compartments but is required for TADs and loops, that CTCF defines their boundaries, and that the cohesin unloading factor WAPL and its PDS5 binding partners control the length of loops. In the absence of WAPL and PDS5 proteins, cohesin forms extended loops, presumably by passing CTCF sites, accumulates in axial chromosomal positions (vermicelli), and condenses chromosomes. Unexpectedly, PDS5 proteins are also required for boundary function. These results show that cohesin has an essential genome-wide function in mediating long-range chromatin interactions and support the hypothesis that cohesin creates these by loop extrusion, until it is delayed by CTCF in a manner dependent on PDS5 proteins, or until it is released from DNA by WAPL.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Fator de Ligação a CCCTC/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos/genética , Proteínas de Ligação a DNA/genética , Genoma Humano/genética , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/genética , Coesinas
19.
Genome Biol ; 18(1): 125, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28655341

RESUMO

Chromosomal rearrangements occur constitutionally in the general population and somatically in the majority of cancers. Detection of balanced rearrangements, such as reciprocal translocations and inversions, is troublesome, which is particularly detrimental in oncology where rearrangements play diagnostic and prognostic roles. Here we describe the use of Hi-C as a tool for detection of both balanced and unbalanced chromosomal rearrangements in primary human tumour samples, with the potential to define chromosome breakpoints to bp resolution. In addition, we show copy number profiles can also be obtained from the same data, all at a significantly lower cost than standard sequencing approaches.


Assuntos
Variações do Número de Cópias de DNA/genética , Neoplasias/genética , Translocação Genética , Aberrações Cromossômicas , Pontos de Quebra do Cromossomo , Inversão Cromossômica/genética , Humanos , Hibridização in Situ Fluorescente
20.
PLoS One ; 12(4): e0174744, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28379994

RESUMO

Hi-C is one of the main methods for investigating spatial co-localisation of DNA in the nucleus. However, the raw sequencing data obtained from Hi-C experiments suffer from large biases and spurious contacts, making it difficult to identify true interactions. Existing methods use complex models to account for biases and do not provide a significance threshold for detecting interactions. Here we introduce a simple binomial probabilistic model that resolves complex biases and distinguishes between true and false interactions. The model corrects biases of known and unknown origin and yields a p-value for each interaction, providing a reliable threshold based on significance. We demonstrate this experimentally by testing the method against a random ligation dataset. Our method outperforms previous methods and provides a statistical framework for further data analysis, such as comparisons of Hi-C interactions between different conditions. GOTHiC is available as a BioConductor package (http://www.bioconductor.org/packages/release/bioc/html/GOTHiC.html).


Assuntos
Cromossomos/genética , Biologia Computacional/métodos , Loci Gênicos/genética , Modelos Estatísticos , Viés , Cromossomos/ultraestrutura , DNA/química , DNA/genética , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...