Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Entomol ; 52(4): 667-680, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37467039

RESUMO

Plants simultaneously interact with belowground symbionts such as arbuscular mycorrhizal (AM) fungi and aboveground antagonists such as aphids. Generally, plants gain access to valuable resources including nutrients and water through the AM symbiosis and are more resistant to pests. Nevertheless, aphids' performance improves on mycorrhizal plants, and it remains unclear whether a more nutritious food source and/or attenuated defenses are the contributing factors. This study examined the shoot and root transcriptome of barrel medic (Medicago truncatula Gaertn.) plants highly colonized by the AM fungus Rhizophagus irregularis (Blaszk., Wubet, Renker, and Buscot) C. Walker and A. Schüßler (Glomerales: Glomeraceae) and exposed to 7 days of mixed age pea aphid (Acyrthosiphon pisum (Harris)) herbivory. The RNA-seq samples chosen for this study showed that aphids were heavier when fed mycorrhizal plants compared to nonmycorrhizal plants. We hypothesized that (i) insect-related plant defense pathways will be downregulated in shoots of mycorrhizal plants with aphids compared to nonmycorrhizal plants with aphids; (ii) pathways involved in nutrient acquisition, carbohydrate-related and amino acid transport will be upregulated in shoots of mycorrhizal plants with aphids compared to nonmycorrhizal plants with aphids; and (iii) roots of mycorrhizal plants with aphids will exhibit mycorrhiza-induced resistance. The transcriptome data revealed that the gene repertoire related to defenses, nutrient transport, and carbohydrates differs between nonmycorrhizal and mycorrhizal plants with aphids, which could explain the weight gain in aphids. We also identified novel candidate genes that are differentially expressed in nonmycorrhizal plants with aphids, thus setting the stage for future functional studies.


Assuntos
Afídeos , Medicago truncatula , Micorrizas , Animais , Micorrizas/fisiologia , Afídeos/genética , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Pisum sativum , Transcriptoma , Raízes de Plantas/metabolismo , Simbiose
2.
Environ Entomol ; 48(2): 370-381, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30715218

RESUMO

Most plants form mutualistic associations with arbuscular mycorrhizal (AM) fungi that are ubiquitous in soils. Through this symbiosis, plants can withstand abiotic and biotic stresses. The underlying molecular mechanisms involved in mediating mycorrhiza-induced resistance against insects needs further research, and this is particularly true for potato (Solanum tuberosum L. (Solanales: Solanaceae)), which is the fourth most important crop worldwide. In this study, the tripartite interaction between potato, the AM fungus Rhizophagus irregularis (Glomerales: Glomeraceae), and cabbage looper (Trichoplusia ni Hübner) (Lepidoptera: Noctuidae) was examined to determine whether potato exhibits mycorrhiza-induced resistance against this insect. Plant growth, insect fitness, AM fungal colonization of roots, and transcript levels of defense-related genes were measured in shoots and roots after 5 and 8 d of herbivory on mycorrhizal and nonmycorrhizal plants. AM fungal colonization of roots did not have an effect on potato growth, but root colonization levels increased by herbivory. Larval weight gain was reduced after 8 d of feeding on mycorrhizal plants compared with nonmycorrhizal plants. Systemic upregulation of Allene Oxide Synthase 1 (AOS1), 12-Oxo-Phytodienoate Reductase 3 (OPR3) (jasmonic acid pathway), Protease Inhibitor Type I (PI-I) (anti-herbivore defense), and Phenylalanine Ammonia Lyase (PAL) transcripts (phenylpropanoid pathway) was found during the tripartite interaction. Together, these findings suggest that potato may exhibit mycorrhiza-induced resistance to cabbage looper by priming anti-herbivore defenses aboveground. This study illustrates how mycorrhizal potato responds to herbivory by a generalist-chewing insect and serves as the basis for future studies involving tripartite interactions with other pests.


Assuntos
Herbivoria , Mariposas , Micorrizas/fisiologia , Solanum tuberosum/fisiologia , Animais , Biomassa , Peso Corporal , Larva , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Solanum tuberosum/microbiologia , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...