Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 1307, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264554

RESUMO

The sources of isotopically light carbon released during the end-Triassic mass extinction remain in debate. Here, we use mercury (Hg) concentrations and isotopes from a pelagic Triassic-Jurassic boundary section (Katsuyama, Japan) to track changes in Hg cycling. Because of its location in the central Panthalassa, far from terrigenous runoff, Hg enrichments at Katsuyama record atmospheric Hg deposition. These enrichments are characterized by negative mass independent fractionation (MIF) of odd Hg isotopes, providing evidence of their derivation from terrestrial organic-rich sediments (Δ199Hg < 0‰) rather than from deep-Earth volcanic gases (Δ199Hg ~ 0‰). Our data thus provide evidence that combustion of sedimentary organic matter by igneous intrusions and/or wildfires played a significant role in the environmental perturbations accompanying the event. This process has a modern analog in anthropogenic combustion of fossil fuels from crustal reservoirs.


Assuntos
Mercúrio , Monitoramento Ambiental , Sedimentos Geológicos , Isótopos , Mercúrio/análise , Isótopos de Mercúrio/análise , Erupções Vulcânicas
2.
Proc Natl Acad Sci U S A ; 114(8): 1806-1810, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28167796

RESUMO

The end-Permian mass extinction represents the most severe biotic crisis for the last 540 million years, and the marine ecosystem recovery from this extinction was protracted, spanning the entirety of the Early Triassic and possibly longer. Numerous studies from the low-latitude Paleotethys and high-latitude Boreal oceans have examined the possible link between ocean chemistry changes and the end-Permian mass extinction. However, redox chemistry changes in the Panthalassic Ocean, comprising ∼85-90% of the global ocean area, remain under debate. Here, we report multiple S-isotopic data of pyrite from Upper Permian-Lower Triassic deep-sea sediments of the Panthalassic Ocean, now present in outcrops of western Canada and Japan. We find a sulfur isotope signal of negative Δ33S with either positive δ34S or negative δ34S that implies mixing of sulfide sulfur with different δ34S before, during, and after the end-Permian mass extinction. The precise coincidence of the negative Δ33S anomaly with the extinction horizon in western Canada suggests that shoaling of H2S-rich waters may have driven the end-Permian mass extinction. Our data also imply episodic euxinia and oscillations between sulfidic and oxic conditions during the earliest Triassic, providing evidence of a causal link between incursion of sulfidic waters and the delayed recovery of the marine ecosystem.


Assuntos
Extinção Biológica , Sulfeto de Hidrogênio/química , Ferro/química , Oceanos e Mares , Sulfetos/química , Isótopos de Enxofre/química , Animais , Ecossistema , Fósseis , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA