Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 3(6): 397-406, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11472504

RESUMO

The techniques of differential fluorescence induction (DFI) and optical trapping (OT) have been combined to allow the identification of environmentally induced genes in single bacterial cells. Designated DFI-OT, this technique allows the in situ isolation of genes driving the expression of green fluorescent protein (Gfp) using temporal and spatial criteria. A series of plasmid-based promoter probe vectors (pOT) was developed for the construction of random genomic libraries that are linked to gfpUV or egfp. Bacteria that do not express Gfp on laboratory medium (i.e. non-fluorescent) were inoculated into the environment, and induced genes were detected with a combined fluorescence/optical trapping microscope. Using this selection strategy, rhizosphere-induced genes with homology to thiamine pyrophosphorylase (thiE) and cyclic glucan synthase (ndvB) were isolated. Other genes were expressed late in the stationary phase or as a consequence of surface-dependent growth, including fixND and metX, and a putative ABC transporter of putrescine. This strategy provides a unique ability to combine spatial, temporal and physical information to identify environmental regulation of bacterial gene expression.


Assuntos
Proteínas de Bactérias/genética , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/fisiologia , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sondas de DNA , Vetores Genéticos , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos , Dados de Sequência Molecular , Pisum sativum/microbiologia , Raízes de Plantas/microbiologia , Rhizobium leguminosarum/citologia , Microbiologia do Solo
2.
Microbiology (Reading) ; 140 ( Pt 10): 2797-809, 1994 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8000544

RESUMO

In Rhizobium leguminosarum both the C4-dicarboxylate transport system and wild-type lipopolysaccharide layer (LPS) are essential for nitrogen fixation. A Tn5 mutant (RU301) of R. leguminosarum bv. viciae 3841, was isolated that is only able to synthesize LPS II, which lacks the O-antigen. Strain RU301 exhibits a rough colony morphology, flocculates in culture and is unable to swarm in TY agar. It also fails to grow on organic acids, sugars or TY unless the concentration of calcium or magnesium is elevated above that normally required for growth. The defects in the LPS and growth in strain RU301 were complemented by a series of cosmids from a strain 3841 cosmid library (pRU3020-pRU3022) and a cosmid from R. leguminosarum bv. phaseoli 8002 (pIJ1848). The transposon insertion in strain RU301 was shown to be located in a 3 kb EcoRI fragment by Southern blotting and cloning from the chromosome. Sub-cloning of pIJ1848 demonstrated that the gene disrupted by the transposon in strain RU301 is located on a 2.4 kb EcoRI-PstI fragment (pRU74). R. leguminosarum bv. viciae VF39-C86, which is one of four LPS mutants previously isolated by U. B. Priefer (1989, J Bacteriol 171, 6161-6168), was also complemented by sub-clones of pIJ1848 but not by pRU74, suggesting the mutation is in a gene adjacent to that disrupted in strain RU301. Complementation and Southern analysis indicate that the region contained in pIJ1848 does not correspond to any other cloned Ips genes. Two dctA mutants, RU436 and RU437, were also complemented by pIJ1848 and pRU3020. Mapping of pIJ1848 and Southern blotting of plasmid-deleted strains of R. leguminosarum revealed that dctD and the region mutated in strain RU301 are located approximately 10 kb apart on the chromosome. Analysis of homogenotes demonstrated that there is not a large region important in calcium utilization, organic acid metabolism or LPS biosynthesis located between the gene disrupted in strain RU301 and dctD. Strain VF39C-86 also required an elevated concentration of calcium for growth on succinate, while strains mutated in the alpha-chromosomal or beta-plasmid group of Ips genes grew at the same calcium concentrations as the wild type, demonstrating that the additional calcium requirement is not a property of all LPS rough mutants. Strain RU301 nodulates peas, but does not reduce acetylene, demonstrating that the gene mutated in this strain is essential for nitrogen fixation.


Assuntos
Proteínas de Bactérias , Cálcio/metabolismo , Lipopolissacarídeos/metabolismo , Rhizobium/genética , Fatores de Transcrição/genética , Southern Blotting , Mapeamento Cromossômico , Teste de Complementação Genética , Magnésio/farmacologia , Mutagênese , Rhizobium/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA