Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14485, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660180

RESUMO

We have used the LOw-Frequency ARray (LOFAR) to search for the growing tip of an intra-cloud (IC) positive leader. Even with our most sensitive beamforming method, where we coherently add the signals of about 170 antenna pairs, we were not able to detect any emission from the tip. Instead, we put constraints on the emissivity of very-high frequency (VHF) radiation from the tip at 0.5 pJ/MHz at 60 MHz, integrated over 100 ns. The limit is independent on whether this emission is in the form of short pulses or continuously radiating. The non-observation of VHF radiation from intra-cloud positive leaders implies that they proceed in an extremely gradual process, which is in sharp contrast with the observations of other parts of a lightning discharge.

2.
Earth Space Sci ; 9(4): e2021EA001958, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35865721

RESUMO

When a lightning flash is propagating in the atmosphere it is known that especially the negative leaders emit a large number of very high frequency (VHF) radio pulses. It is thought that this is due to streamer activity at the tip of the growing negative leader. In this work, we have investigated the dependence of the strength of this VHF emission on the altitude of such emission for two lightning flashes as observed by the Low Frequency ARray (LOFAR) radio telescope. We find for these two flashes that the extracted amplitude distributions are consistent with a power-law, and that the amplitude of the radio emissions decreases very strongly with source altitude, by more than a factor of 2 from 1 km altitude up to 5 km altitude. In addition, we do not find any dependence on the extracted power-law with altitude, and that the extracted power-law slope has an average around 3, for both flashes.

3.
Sci Rep ; 11(1): 16256, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376724

RESUMO

The common phenomenon of lightning still harbors many secrets such as what are the conditions for lightning initiation and what is driving the discharge to propagate over several tens of kilometers through the atmosphere forming conducting ionized channels called leaders. Since lightning is an electric discharge phenomenon, there are positively and negatively charged leaders. In this work we report on measurements made with the LOFAR radio telescope, an instrument primarily build for radio-astronomy observations. It is observed that a negative leader rather suddenly changes, for a few milliseconds, into a mode where it radiates 100 times more VHF power than typical negative leaders after which it spawns a large number of more typical negative leaders. This mode occurs during the initial stage, soon after initiation, of all lightning flashes we have mapped (about 25). For some flashes this mode occurs also well after initiation and we show one case where it is triggered twice, some 100 ms apart. We postulate that this is indicative of a small (order of 5 km[Formula: see text]) high charge pocket. Lightning thus appears to be initiated exclusively in the vicinity of such a small but dense charge pocket.

4.
Earth Space Sci ; 8(7): e2020EA001523, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34435079

RESUMO

Since their introduction 22 years ago, lightning mapping arrays (LMA) have played a central role in the investigation of lightning physics. Even in recent years with the proliferation of digital interferometers and the introduction of the LOw Frequency ARray (LOFAR) radio telescope, LMAs still play an important role in lightning science. LMA networks use a simple windowing technique that records the highest pulse in either 80 µs or 10 µs fixed windows in order to apply a time-of-arrival location technique. In this work, we develop an LMA-emulator that uses lightning data recorded by LOFAR to simulate an LMA, and we use it to test three new styles of pulse windowing. We show that they produce very similar results as the more traditional LMA windowing, implying that LMA lightning mapping results are relatively independent of windowing technique. In addition, each LMA station has its GPS-conditioned clock. While the timing accuracy of GPS receivers has improved significantly over the years, they still significantly limit the timing measurements of the LMA. Recently, new time-of-arrival techniques have been introduced that can be used to self-calibrate systematic offsets between different receiving stations. Applying this calibration technique to a set of data with 32 ns uncertainty, observed by the Colorado LMA, improves the timing uncertainty to 19 ns. This technique is not limited to LMAs and could be used to help calibrate future multi-station lightning interferometers.

5.
J Geophys Res Atmos ; 125(8): e2019JD031433, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32714723

RESUMO

An analysis is presented of electric fields in thunderclouds using a recently proposed method based on measuring radio emission from extensive air shower events during thunderstorm conditions. This method can be regarded as a tomography of thunderclouds using cosmic rays as probes. The data cover the period from December 2011 till August 2014. We have developed an improved fitting procedure to be able to analyze the data. Our measurements show evidence for the main negative-charge layer near the -10° isotherm. This we have seen for a winter as well as for a summer cloud where multiple events pass through the same cloud and also the vertical component of the electric field could be reconstructed. On the day of measurement of some cosmic-ray events showing evidence for strong fields, no lightning activity was detected within 100 km distance. For the winter events, the top heights were between 5 and 6 km, while in the summer, typical top heights of 9 km were seen. Large horizontal components in excess of 70 kV/m of the electric fields are observed in the middle and top layers.

6.
Phys Rev Lett ; 124(10): 105101, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32216418

RESUMO

We use the Low Frequency Array (LOFAR) to probe the dynamics of the stepping process of negatively charged plasma channels (negative leaders) in a lightning discharge. We observe that at each step of a leader, multiple pulses of vhf (30-80 MHz) radiation are emitted in short-duration bursts (<10 µs). This is evidence for streamer formation during corona flashes that occur with each leader step, which has not been observed before in natural lightning and it could help explain x-ray emission from lightning leaders, as x rays from laboratory leaders tend to be associated with corona flashes. Surprisingly, we find that the stepping length is very similar to what was observed near the ground, however with a stepping time that is considerably larger, which as yet is not understood. These results will help to improve lightning propagation models, and eventually lightning protection models.

7.
Nature ; 568(7752): 360-363, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30996312

RESUMO

Lightning is a dangerous yet poorly understood natural phenomenon. Lightning forms a network of plasma channels propagating away from the initiation point with both positively and negatively charged ends-called positive and negative leaders1. Negative leaders propagate in discrete steps, emitting copious radio pulses in the 30-300-megahertz frequency band2-8 that can be remotely sensed and imaged with high spatial and temporal resolution9-11. Positive leaders propagate more continuously and thus emit very little high-frequency radiation12. Radio emission from positive leaders has nevertheless been mapped13-15, and exhibits a pattern that is different from that of negative leaders11-13,16,17. Furthermore, it has been inferred that positive leaders can become transiently disconnected from negative leaders9,12,16,18-20, which may lead to current pulses that both reconnect positive leaders to negative leaders11,16,17,20-22 and cause multiple cloud-to-ground lightning events1. The disconnection process is thought to be due to negative differential resistance18, but this does not explain why the disconnections form primarily on positive leaders22, or why the current in cloud-to-ground lightning never goes to zero23. Indeed, it is still not understood how positive leaders emit radio-frequency radiation or why they behave differently from negative leaders. Here we report three-dimensional radio interferometric observations of lightning over the Netherlands with unprecedented spatiotemporal resolution. We find small plasma structures-which we call 'needles'-that are the dominant source of radio emission from the positive leaders. These structures appear to drain charge from the leader, and are probably the reason why positive leaders disconnect from negative ones, and why cloud-to-ground lightning connects to the ground multiple times.

8.
J Geophys Res Atmos ; 123(5): 2861-2876, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29938144

RESUMO

Lightning mapping technology has proven instrumental in understanding lightning. In this work we present a pipeline that can use lightning observed by the LOw-Frequency ARray (LOFAR) radio telescope to construct a 3-D map of the flash. We show that LOFAR has unparalleled precision, on the order of meters, even for lightning flashes that are over 20 km outside the area enclosed by LOFAR antennas (∼3,200 km2), and can potentially locate over 10,000 sources per lightning flash. We also show that LOFAR is the first lightning mapping system that is sensitive to the spatial structure of the electrical current during individual lightning leader steps.

10.
Nature ; 531(7592): 70-3, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26935696

RESUMO

Cosmic rays are the highest-energy particles found in nature. Measurements of the mass composition of cosmic rays with energies of 10(17)-10(18) electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal comes from accelerators capable of producing cosmic rays of these energies. Cosmic rays initiate air showers--cascades of secondary particles in the atmosphere-and their masses can be inferred from measurements of the atmospheric depth of the shower maximum (Xmax; the depth of the air shower when it contains the most particles) or of the composition of shower particles reaching the ground. Current measurements have either high uncertainty, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays is a rapidly developing technique for determining Xmax (refs 10, 11) with a duty cycle of, in principle, nearly 100 per cent. The radiation is generated by the separation of relativistic electrons and positrons in the geomagnetic field and a negative charge excess in the shower front. Here we report radio measurements of Xmax with a mean uncertainty of 16 grams per square centimetre for air showers initiated by cosmic rays with energies of 10(17)-10(17.5) electronvolts. This high resolution in Xmax enables us to determine the mass spectrum of the cosmic rays: we find a mixed composition, with a light-mass fraction (protons and helium nuclei) of about 80 per cent. Unless, contrary to current expectations, the extragalactic component of cosmic rays contributes substantially to the total flux below 10(17.5) electronvolts, our measurements indicate the existence of an additional galactic component, to account for the light composition that we measured in the 10(17)-10(17.5) electronvolt range.

11.
Phys Rev Lett ; 114(16): 165001, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25955053

RESUMO

We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.

12.
Phys Rev Lett ; 107(6): 061101, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21902308

RESUMO

Very energetic cosmic rays entering the atmosphere of Earth will create a plasma cloud moving with almost the speed of light. The magnetic field of Earth induces an electric current in this cloud which is responsible for the emission of coherent electromagnetic radiation. We propose to search for a new effect: Because of the index of refraction of air, this radiation is collimated in a Cherenkov cone. To express the difference from usual Cherenkov radiation, i.e., the emission from a fast-moving electric charge, we call this magnetically induced Cherenkov radiation. We indicate its signature and possible experimental verification.

13.
Phys Rev Lett ; 103(19): 191301, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-20365914

RESUMO

Particle cascades initiated by ultrahigh energy neutrinos in the lunar regolith will emit an electromagnetic pulse with a time duration of the order of nanoseconds through a process known as the Askaryan effect. It has been shown that in an observing window around 150 MHz there is a maximum chance for detecting this radiation with radio telescopes commonly used in astronomy. In 50 h of observation time with the Westerbork Synthesis Radio Telescope array we have set a new limit on the flux of neutrinos, summed over all flavors, with energies in excess of 4x10(22) eV.

14.
Phys Rev Lett ; 99(9): 092503, 2007 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-17931002

RESUMO

High-energy-resolution inelastic electron scattering (at the S-DALINAC) and proton scattering (at iThemba LABS) experiments permit a thorough test of the nature of proposed one- and two-phonon symmetric and mixed-symmetric 2+ states of the nucleus 94Mo. The combined analysis reveals the one-phonon content of the mixed-symmetry state and its isovector character suggested by microscopic nuclear model calculations. The purity of two-phonon 2+ states is extracted.

15.
Phys Rev Lett ; 92(20): 202301, 2004 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-15169344

RESUMO

Data on proton-neutron bremsstrahlung have been obtained from a measurement of the quasifree breakup channel in proton-deuteron bremsstrahlung. This high-precision measurement, with an incident proton energy of 190 MeV, is fully exclusive; i.e., the protons, the neutron, and the photon have been detected. The quasifree differential cross sections obtained are compared with microscopic calculations and calculations based on soft-photon models. There are sizable differences between the models and also between the models and the data obtained for this simple process.

16.
Phys Rev Lett ; 90(6): 062301, 2003 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-12633288

RESUMO

For the first time a high-precision proton-deuteron bremsstrahlung experiment has been performed in which all the different exit channels have been distinguished separately. High-precision cross sections and analyzing powers in one of the outgoing channels, namely, the coherent bremsstrahlung with a proton and a deuteron in the final state, are presented at 190 MeV incoming proton beam energy and are compared to calculations based on the low-energy theorem. The results of the calculations vary considerably calling for a fully microscopic calculation. However, using a recipe including the initial- and final-state interactions, the predictions come close to the data.

17.
Theor Appl Genet ; 99(3-4): 740-6, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22665213

RESUMO

Rhizomania is a serious disease of sugar beet, caused by beet necrotic yellow vein virus (BNYVV). The disease can only be controlled by the use of resistant cultivars. The accession Holly contains a single dominant gene for resistance, called Rz. The identification of a locus for resistance that differs from Rz would provide possibilities to produce cultivars with multiple resistance to BNYVV. Inheritance of resistance to BNYVV was studied by screening progenies of crosses between resistant plants of the accessions Beta vulgaris subsp. maritima WB42 and B. vulgaris subsp. vulgaris Holly-1-4 or R104. Observed and expected segregation ratios were compared to elucidate whether the resistance genes in the three accessions are alleles or situated on different loci. STS markers, linked to the genes for resistance, were used to study the segregation in more detail. The results demonstrated that the genes for resistance to BNYVV inHolly-1-4 and WB42 are closely linked. The gene for resistance in R104 is at the same locus as in Holly-1-4, and also closely linked to the gene in WB42. As the Holly resistance gene has been named Rz, the name Rz2 is proposed to refer to the resistance gene in WB42. Consequently, the gene Rz should be referred to as Rz1.

18.
Theor Appl Genet ; 94(1): 123-30, 1997 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19352754

RESUMO

Molecular markers linked to resistance genes are useful to facilitate the introgression of one or more of these genes in breeding materials. Following the approach of bulked segregant analysis, RAPD markers linked to resistance genes against beet necrotic yellow vein virus were identified in the four Beta accessions Holly-1-4, R104, R128 and WB42. Two primers were found which generate RAPD markers tightly linked to resistance in segregating families of Holly-1-4, R104 and R128, indicating that the resistance genes in these accessions might be situated at the same locus. Other, specific, primers were identified which generate RAPD markers linked to resistance in each of these accessions. Short-range maps were established around the resistance locus in these accessions. For WB42, RAPD markers were only identified at a relatively large distance from the resistance gene. Conversion of three RAPD primers of Holly-1-4, R104 and R128 into STS primers resulted in STS markers which can be readily used for marker-assisted selection in breeding programmes.

20.
Arch Virol ; 136(3-4): 349-61, 1994.
Artigo em Inglês | MEDLINE | ID: mdl-8031238

RESUMO

Mechanisms of resistance to beet necrotic yellow vein virus (BNYVV) were studied by comparing the multiplication and distribution of BNYVV in root tissue of some beet accessions. Seedlings were infected either by soil containing resting spores of Polymyxa betae with BNYVV, or by a viruliferous zoospore suspension. With both inoculation methods high virus concentrations were obtained in rootlets of the susceptible cultivar 'Regina'. Using infested soil, low virus concentrations were found in the partially resistant cultivar 'Rima' and in the resistant accessions Holly and WB42. When a zoospore suspension was used, similar virus concentrations occurred in 'Rima' and Holly as in 'Regina', while a low virus concentration was found in WB42. By in situ localisation studies, using immunogold-silver labelling, virus was detected in 'Regina' after infection by soil or a zoospore suspension, but it could only be detected in the resistant accessions after infection by a zoospore suspension. In rootlets of 'Regina', 'Rima' and Holly, virus was found in the epidermis, cortex parenchyma, endodermis, and interstitial parenchyma, but in general not inside the vascular tissue. In WB42 the virus, occurring in small aggregates, seemed to be restricted to the epidermis and some cortex parenchyma cells. Comparing both the multiplication and distribution of BNYVV in rootlets of the accessions studied, it is concluded that the virus resistance mechanism in 'Rima' and Holly is different from that in WB42.


Assuntos
Vírus de Plantas/isolamento & purificação , Vírus de RNA/isolamento & purificação , Verduras/microbiologia , Imuno-Histoquímica , Hibridização In Situ
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...