Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chirality ; 31(12): 1028-1042, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31646689

RESUMO

Chirality plays a pivotal role in an uncountable number of biological processes, and nature has developed intriguing mechanisms to maintain this state of enantiopurity. The strive for a deeper understanding of the different elements that constitute such self-sustaining systems on a molecular level has sparked great interest in the studies of autoinductive and amplifying enantioselective reactions. The design of these reactions remains highly challenging; however, the development of generally applicable principles promises to have a considerable impact on research of catalyst design and other adjacent fields in the future. Here, we report the realization of an autoinductive, enantioselective self-inhibiting hydrogenation reaction. Development of a stereodynamic catalyst with chiral sensing abilities allowed for a chiral reaction product to interact with the catalyst and change its selectivity in order to suppress its formation, which caused a reversal of selectivity over time.

2.
Chemistry ; 25(50): 11707-11714, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31336015

RESUMO

Well-defined supramolecular interactions are a powerful tool to control the stereochemistry of a catalytic reaction. In this paper, we report a novel core motif for fluxional 2,2'-biphenyl ligands carrying (S)-amino acid-derived interaction sites in 5,5'-position that cause spontaneous enrichment of the Rax rotamer. The process is based on strong non-covalent interlocking between interaction sites, which causes diastereoselective formation of a supramolecular ligand dimer, in which the axial chirality of the two subunits is dictated by the stereochemical information in the amino acid residues. The detailed structure of the dimer was elucidated by NMR spectroscopy and single-crystal X-ray analysis. Three different phosphorus-based ligand types, namely a bisphosphine, a bisphosphinite and a phosphoramidite were synthesized and characterized. Whereas the first one was found to exist in a strongly weighted equilibrium, the two others each exhibited stereoconvergent behavior transforming into the diastereopure Rax rotamer. Enriched ligands were used in rhodium-mediated asymmetric hydrogenation reactions of prochiral olefins in which very high enantioselectivities of up to 96:4 were achieved.

3.
Angew Chem Int Ed Engl ; 58(19): 6306-6310, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30786123

RESUMO

The design of a new class of fluxional biphenyl bisphosphinite (BIBIPHOS) ligands decorated with amino acid-based diamide interaction sites is reported that undergo spontaneous desymmetrization. Hydrogenation of prochiral alkenes using Rh-BIBIPHOS results in enantiomeric ratios of up to 96:4 (R/S). This stereoconvergent behavior of the fluxional BIBIPHOS ligand is triggered by pronounced intermolecular interlocking of the recognition sites, leading to the formation of a supramolecular assembly, where the axial orientation of the biphenyl ligand backbone is governed by the chirality of the amino acid moieties. Stereoinduction during catalysis is decoupled from this process and occurs as an immediate consequence of the emergent behavior of the ligands. This supramolecular system is very robust and has the potential to be adopted for other ligand designs in enantioselective catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA