Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 130(3): 409-418, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35325023

RESUMO

BACKGROUND AND AIMS: The ecohydrological significance of leaf wetting due to atmospheric water in arid and semiarid ecosystems is not well understood. In these environments, the inputs of precipitation or dew formation resulting in leaf wetting have positive effects on plant functioning. However, its impact on plant water relations may depend on the degree of leaf surface wettability. In this study we evaluated leaf wettability and other leaf traits and its effects on foliar water uptake and canopy interception in plant species of a Patagonian steppe. We also studied how leaf traits affecting wettability vary seasonally from growing to dry season. METHODS: Contact angle of a water droplet with the leaf surface, water adhesion, droplet retention angle, stomatal density, cuticular conductance, canopy interception and maximum foliar water uptake were determined in six dominant shrub species. KEY RESULTS: All species increased leaf wettability during the dry season and most species were considered highly wettable. The leaf surface had very high capacity to store and retain water. We found a negative correlation between foliar water uptake and leaf hydrophilia. CONCLUSIONS: Despite the diversity of life forms, including cushion shrubs and tall shrubs, as well as phenological variability, all species converged in similar seasonal changes in leaf traits that favour wettability. Intercepted water by crowns and the extremely high capacity of retention of droplets on leaf surfaces can have a significant impact on eco-hydrological process in water limited ecosystems where most of water sources during the growing and the dry season may be small rainfall events or dew, which do not always increase soil water availability.


Assuntos
Água Subterrânea , Água , Ecossistema , Folhas de Planta , Plantas , Solo , Molhabilidade
2.
Tree Physiol ; 41(10): 1836-1847, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-33823046

RESUMO

Low temperatures and drought are the main environmental factors affecting plant growth and productivity across most of the terrestrial biomes. The objective of this study was to analyze the effects of water deficits before the onset of low temperatures in winter to enhance freezing resistance in olive trees. The study was carried out near the coast of Chubut, Argentina. Plants of five olive cultivars were grown outdoor in pots and exposed to different water deficit treatments. We assessed leaf water relations, ice nucleation temperature (INT), cell damage (LT50), plant growth and leaf nitrogen content during summer and winter in all cultivars and across water deficit treatments. Leaf INT and LT50 decreased significantly from summer to winter within each cultivar and between treatments. We observed a trade-off between resources allocation to freezing resistance and vegetative growth, such that an improvement in resistance to sub-zero temperatures was associated with lower growth in tree height. Water deficit applied during summer increased the amount of osmotically active solutes and decreased the leaf water potentials. This type of legacy effect persists during the winter after the water deficit even when treatment was removed by natural rainfalls.


Assuntos
Olea , Água , Aclimatação , Congelamento , Temperatura
3.
Oecologia ; 193(2): 337-348, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32474806

RESUMO

Foliar water uptake (FWU) has been reported for different species across several ecosystems types. However, little attention has been given to arid ecosystems, where FWU during dew formation or small rain events could ameliorate water deficits. FWU and their effects on leaf water potential (ΨLeaf) were evaluated in grasses and shrubs exploring different soil water sources in a Patagonian steppe. Also, seasonal variability in FWU and the role of cell wall elasticity in determining the effects on ΨLeaf were assessed. Eleven small rain events (< 8 mm) and 45 days with dew formation were recorded during the study period. All species exhibited FWU after experimental wetting. There was a large variability in FWU across species, from 0.04 mmol m-2 s-1 in species with deep roots to 0.75 mmol m-2 s-1 in species with shallow roots. Species-specific mean FWU rates were positively correlated with mean transpiration rates. The increase in ΨLeaf after leaf wetting varied between 0.65 MPa and 1.67 MPa across species and seasons. The effects of FWU on ΨLeaf were inversely correlated with cell wall elasticity. FWU integrated over both seasons varied between 28 mol m-2 in species with deep roots to 361 mol m-2 in species with shallow roots. Taking into account the percentage of coverage of each species, accumulated FWU represented 1.6% of the total annual transpiration of grasses and shrubs in this ecosystem. Despite this low FWU integrated over time compared to transpiration, wetting leaves surfaces can help to avoid larger water deficit during the dry season.


Assuntos
Ecossistema , Água , Folhas de Planta , Transpiração Vegetal , Estações do Ano , Solo
4.
Plant Cell Environ ; 42(5): 1603-1614, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30613989

RESUMO

The hydraulic coordination along the water transport pathway helps trees provide adequate water supply to the canopy, ensuring that water deficits are minimized and that stomata remain open for CO2 uptake. We evaluated the stem and leaf hydraulic coordination and the linkages between hydraulic traits and the timing of diurnal depression of photosynthesis across seven evergreen tree species in the southern Andes. There was a positive correlation between stem hydraulic conductivity (ks ) and leaf hydraulic conductance (KLeaf ) across species. All species had similar maximum photosynthetic rates (Amax ). The species with higher ks and KLeaf attained Amax in the morning, whereas the species with lower ks and KLeaf exhibited their Amax in the early afternoon concurrently with turgor loss. These latter species had very negative leaf water potentials, but far from the pressure at which the 88% of leaf hydraulic conductance is lost. Our results suggest that diurnal gas exchange dynamics may be determined by leaf hydraulic vulnerability such that a species more vulnerable to drought restrict water loss and carbon assimilation earlier than species less vulnerable. However, under stronger drought, species with earlier CO2 uptake depression may increase the risk of hydraulic failure, as their safety margins are relatively narrow.


Assuntos
Fotossíntese/fisiologia , Estômatos de Plantas/metabolismo , Transpiração Vegetal/fisiologia , Árvores/metabolismo , Dióxido de Carbono/metabolismo , Ritmo Circadiano , Secas , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Água/metabolismo
5.
Tree Physiol ; 37(9): 1251-1262, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28633378

RESUMO

Stems and leaves of Olea europaea L. (olive) avoid freezing damage by substantial supercooling during the winter season. Physiological changes during acclimation to low temperatures were studied in five olive cultivars. Water relations and hydraulic traits, ice nucleation temperature (INT) and temperatures resulting in 50% damage (LT50) were determined. All cultivars showed a gradual decrease in INT and LT50 from the dry and warm summer to the wet and cold winter in Patagonia, Argentina. During acclimation to low temperatures there was an increase in leaf cell wall rigidity and stomatal conductance (gs), as well as a decrease in leaf apoplastic water content, leaf water potential (Ψ), sap flow and stem hydraulic conductivity (ks). More negative Ψ as a consequence of high gs and detrimental effects of low temperatures on root activity resulted in a substantial loss of ks due to embolism formation. Seasonal stem INT decrease from summer to winter was directly related to the xylem resistance to cavitation, determined by the loss of ks across cultivars. Thus the loss of freezable water in xylem vessels by embolisms increased stem supercooling capacity and delayed ice propagation from stems to the leaves. For the first time, a trade-off between xylem resistance to cavitation and stem and leaf supercooling capacity was observed in plants that avoid extracellular freezing by permanent supercooling. The substantial loss of hydraulic function in olive cultivar stems by embolism formation with their high repair costs are compensated by avoiding plant damage at very low subzero temperatures.


Assuntos
Congelamento , Caules de Planta/fisiologia , Madeira/fisiologia , Xilema/fisiologia , Argentina , Folhas de Planta , Estações do Ano , Água
6.
Tree Physiol ; 36(8): 1007-18, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27217529

RESUMO

Freezing resistance through avoidance or tolerance of extracellular ice nucleation is important for plant survival in habitats with frequent subzero temperatures. However, the role of cell walls in leaf freezing resistance and the coordination between leaf and stem physiological processes under subzero temperatures are not well understood. We studied leaf and stem responses to freezing temperatures, leaf and stem supercooling, leaf bulk elastic modulus and stem xylem vessel size of six Patagonian shrub species from two sites (plateau and low elevation sites) with different elevation and minimum temperatures. Ice seeding was initiated in the stem and quickly spread to leaves, but two species from the plateau site had barriers against rapid spread of ice. Shrubs with xylem vessels smaller in diameter had greater stem supercooling capacity, i.e., ice nucleated at lower subzero temperatures. Only one species with the lowest ice nucleation temperature among all species studied exhibited freezing avoidance by substantial supercooling, while the rest were able to tolerate extracellular freezing from -11.3 to -20 °C. Leaves of species with more rigid cell walls (higher bulk elastic modulus) could survive freezing to lower subzero temperatures, suggesting that rigid cell walls potentially reduce the degree of physical injury to cell membranes during the extracellular freezing and/or thaw processes. In conclusion, our results reveal the temporal-spatial ice spreading pattern (from stem to leaves) in Patagonian shrubs, and indicate the role of xylem vessel size in determining supercooling capacity and the role of cell wall elasticity in determining leaf tolerance of extracellular ice formation.


Assuntos
Parede Celular/metabolismo , Temperatura Baixa , Caules de Planta/metabolismo , Parede Celular/fisiologia , Módulo de Elasticidade/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Caules de Planta/fisiologia
7.
Plant Cell Environ ; 38(10): 2061-70, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25737264

RESUMO

Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub-zero temperatures. Seasonal leaf water relations, non-structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to -13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50 ) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub-zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold-acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures.


Assuntos
Aclimatação , Parede Celular/metabolismo , Olea/fisiologia , Água/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Temperatura Baixa , Congelamento , Osmose , Estações do Ano
8.
Tree Physiol ; 35(4): 354-65, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25428825

RESUMO

Wood biophysical properties and the dynamics of water storage discharge and refilling were studied in the trunk of canopy tree species with diverse life history and functional traits in subtropical forests of northeast Argentina. Multiple techniques assessing capacitance and storage capacity were used simultaneously to improve our understanding of the functional significance of internal water sources in trunks of large trees. Sapwood capacitances of 10 tree species were characterized using pressure-volume relationships of sapwood samples obtained from the trunk. Frequency domain reflectometry was used to continuously monitor the volumetric water content in the main stems. Simultaneous sap flow measurements on branches and at the base of the tree trunk, as well as diurnal variations in trunk contraction and expansion, were used as additional measures of stem water storage use and refilling dynamics. All evidence indicates that tree trunk internal water storage contributes from 6 to 28% of the daily water budget of large trees depending on the species. The contribution of stored water in stems of trees to total daily transpiration was greater for deciduous species, which exhibited higher capacitance and lower sapwood density. A linear relationship across species was observed between wood density and growth rates with the higher wood density species (mostly evergreen) associated with lower growth rates and the lower wood density species (mostly deciduous) associated with higher growth rates. The large sapwood capacitance in deciduous species may help to avoid catastrophic embolism in xylem conduits. This may be a low-cost adaptation to avoid water deficits during peak water use at midday and under temporary drought periods and will contribute to higher growth rates in deciduous tree species compared with evergreen ones. Large capacitance appears to have a central role in the rapid growth patterns of deciduous species facilitating rapid canopy access as these species are less shade tolerant than evergreen species.


Assuntos
Caules de Planta/metabolismo , Transpiração Vegetal , Árvores/fisiologia , Clima Tropical , Água/fisiologia , Madeira/crescimento & desenvolvimento , Xilema , Secas , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Água/metabolismo
9.
Plant Cell Environ ; 36(12): 2163-74, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23639077

RESUMO

Hydraulic architecture was studied in shrub species differing in rooting depth in a cold desert in Southern Argentina. All species exhibited strong hydraulic segmentation between leaves, stems and roots with leaves being the most vulnerable part of the hydraulic pathway. Two types of safety margins describing the degree of conservation of the hydraulic integrity were used: the difference between minimum stem or leaf water potential (Ψ) and the Ψ at which stem or leaf hydraulic function was reduced by 50% (Ψ - Ψ50), and the difference between leaf and stem Ψ50. Leaf Ψ50 - stem Ψ50 increased with decreasing rooting depth. Large diurnal decreases in root-specific hydraulic conductivity suggested high root vulnerability to embolism across all species. Although stem Ψ50 became more negative with decreasing species-specific Ψsoil and minimum stem Ψ, leaf Ψ50 was independent of Ψ and minimum leaf Ψ. Species with embolism-resistant stems also had higher maximum stem hydraulic conductivity. Safety margins for stems were >2.1 MPa, whereas those for leaves were negative or only slightly positive. Leaves acted as safety valves to protect the integrity of the upstream hydraulic pathway, whereas embolism in lateral roots may help to decouple portions of the plant from the impact of drier soil layers.


Assuntos
Secas , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/fisiologia , Caules de Planta/fisiologia , Xilema/fisiologia , Argentina , Ritmo Circadiano/fisiologia , Água
10.
Oecologia ; 173(3): 675-87, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23624673

RESUMO

Phenotypic plasticity in morphophysiological leaf traits in response to wind was studied in two dominant shrub species of the Patagonian steppe, used as model systems for understanding effects of high wind speed on leaf water relations and hydraulic properties of small woody plants. Morpho-anatomical traits, hydraulic conductance and conductivity and water relations in leaves of wind-exposed and protected crown sides were examined during the summer with nearly continuous high winds. Although exposed sides of the crowns were subjected to higher wind speeds and air saturation deficits than the protected sides, leaves throughout the crown had similar minimum leaf water potential (ΨL). The two species were able to maintain homeostasis in minimum ΨL using different physiological mechanisms. Berberis microphylla avoided a decrease in the minimum ΨL in the exposed side of the crown by reducing water loss by stomatal control, loss of cell turgor and low epidermal conductance. Colliguaja integerrima increased leaf water transport efficiency to maintain transpiration rates without increasing the driving force for water loss in the wind-exposed crown side. Leaf physiological changes within the crown help to prevent the decrease of minimum ΨL and thus contribute to the maintenance of homeostasis, assuring the hydraulic integrity of the plant under unfavorable conditions. The responses of leaf traits that contribute to mechanical resistance (leaf mass per area and thickness) differed from those of large physiological traits by exhibiting low phenotypic plasticity. The results of this study help us to understand the unique properties of shrubs which have different hydraulic architecture compared to trees.


Assuntos
Berberis/fisiologia , Euphorbiaceae/fisiologia , Homeostase/fisiologia , Fenótipo , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Vento , Argentina , Clima Desértico , Folhas de Planta/anatomia & histologia , Estômatos de Plantas/fisiologia , Pressão , Estatísticas não Paramétricas , Água/metabolismo
12.
Tree Physiol ; 32(7): 880-93, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22684354

RESUMO

Hydraulic traits were studied for six Nothofagus species from South America (Argentina and Chile), and for three of these species two populations were studied. The main goal was to determine if properties of the water conductive pathway in stems and leaves are functionally coordinated and to assess if leaves are more vulnerable to cavitation than stems, consistent with the theory of hydraulic segmentation along the vascular system of trees in ecosystems subject to seasonal drought. Vulnerability to cavitation, hydraulic conductivity of stems and leaves, leaf water potential, wood density and leaf water relations were examined. Large variations in vulnerability to cavitation of stems and leaves were observed across populations and species, but leaves were consistently more vulnerable than stems. Water potential at 50% loss of maximum hydraulic efficiency (P(50)) ranged from -0.94 to -2.44 MPa in leaves and from -2.6 to -5.3 MPa in stems across species and populations. Populations in the driest sites had sapwood and leaves more vulnerable to cavitation than those grown in the wettest sites. Stronger diurnal down-regulation in leaf hydraulic conductance compared with stem hydraulic conductivity apparently has the function to slow down potential water loss in stems and protect stem hydraulics from cavitation. Species-specific differences in wood density and leaf hydraulic conductance (K(Leaf)) were observed. Both traits were functionally related: species with higher wood density had lower K(Leaf). Other stem and leaf hydraulic traits were functionally coordinated, resulting in Nothofagus species with an efficient delivery of water to the leaves. The integrity of the more expensive woody portion of the water transport pathway can thus be maintained at the expense of the replaceable portion (leaves) of the stem-leaf continuum under prolonged drought. Compensatory adjustments between hydraulic traits may help to decrease the rate of embolism formation in the trees more vulnerable to cavitation.


Assuntos
Magnoliopsida/fisiologia , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Água/metabolismo , Altitude , Transporte Biológico , Umidade , Chuva , Solo , América do Sul , Especificidade da Espécie , Temperatura , Madeira/fisiologia
13.
Oecologia ; 170(4): 885-97, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22644052

RESUMO

Physiological adjustments to enhance tolerance or avoidance of summer drought and winter freezing were studied in shallow- to deep-rooted Patagonian cold desert shrubs. We measured leaf water potential (Ψ(L)), osmotic potential, tissue elasticity, stem hydraulic characteristics, and stomatal conductance (g (S)) across species throughout the year, and assessed tissue damage by subzero temperatures during winter. Species behavior was highly dependent on rooting depth. Substantial osmotic adjustment (up to 1.2 MPa) was observed in deep-rooted species exhibiting relatively small seasonal variations in Ψ(L) and with access to a more stable water source, but having a large difference between predawn and midday Ψ(L). On the other hand, shallow-rooted species exposed to large seasonal changes in Ψ(L) showed limited osmotic adjustment and incomplete stomatal closure, resulting in turgor loss during periods of drought. The bulk leaf tissue elastic modulus (ε) was lower in species with relatively shallow roots. Daily variation in g (S) was larger in shallow-rooted species (more than 50 % of its maximum) and was negatively associated with the difference between Ψ(L) at the turgor loss point and minimum Ψ(L) (safety margin for turgor maintenance). All species increased ε by about 10 MPa during winter. Species with rigid tissue walls exhibited low leaf tissue damage at -20 °C. Our results suggest that osmotic adjustment was the main water relationship adaptation to cope with drought during summer and spring, particularly in deep-rooted plants, and that adjustments in cell wall rigidity during the winter helped to enhance freezing tolerance.


Assuntos
Adaptação Fisiológica , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/fisiologia , Temperatura Baixa , Osmose , Equilíbrio Hidroeletrolítico
14.
Plant Cell Environ ; 32(10): 1456-66, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19558407

RESUMO

Size-related changes in hydraulic architecture, carbon allocation and gas exchange of Sclerolobium paniculatum (Leguminosae), a dominant tree species in Neotropical savannas of central Brazil (Cerrado), were investigated to assess their potential role in the dieback of tall individuals. Trees greater than approximately 6-m-tall exhibited more branch damage, larger numbers of dead individuals, higher wood density, greater leaf mass per area, lower leaf area to sapwood area ratio (LA/SA), lower stomatal conductance and lower net CO(2) assimilation than small trees. Stem-specific hydraulic conductivity decreased, while leaf-specific hydraulic conductivity remained nearly constant, with increasing tree size because of lower LA/SA in larger trees. Leaves were substantially more vulnerable to embolism than stems. Large trees had lower maximum leaf hydraulic conductance (K(leaf)) than small trees and all tree sizes exhibited lower K(leaf) at midday than at dawn. These size-related adjustments in hydraulic architecture and carbon allocation apparently incurred a large physiological cost: large trees received a lower return in carbon gain from their investment in stem and leaf biomass compared with small trees. Additionally, large trees may experience more severe water deficits in dry years due to lower capacity for buffering the effects of hydraulic path-length and soil water deficits.


Assuntos
Carbono/metabolismo , Fabaceae/fisiologia , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Água/fisiologia , Brasil , Dióxido de Carbono/metabolismo , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Árvores/fisiologia , Madeira/fisiologia
15.
Oecologia ; 160(4): 631-41, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19330355

RESUMO

Adaptations of species to capture limiting resources is central for understanding structure and function of ecosystems. We studied the water economy of nine woody species differing in rooting depth in a Patagonian shrub steppe from southern Argentina to understand how soil water availability and rooting depth determine their hydraulic architecture. Soil water content and potentials, leaf water potentials (Psi(Leaf)), hydraulic conductivity, wood density (rho(w)), rooting depth, and specific leaf area (SLA) were measured during two summers. Water potentials in the upper soil layers during a summer drought ranged from -2.3 to -3.6 MPa, increasing to -0.05 MPa below 150 cm. Predawn Psi(Leaf) was used as a surrogate of weighted mean soil water potential because no statistical differences in Psi(Leaf) were observed between exposed and covered leaves. Species-specific differences in predawn Psi(Leaf) were consistent with rooting depths. Predawn Psi(Leaf) ranged from -4.0 MPa for shallow rooted shrubs to -1.0 MPa for deep-rooted shrubs, suggesting that the roots of the latter have access to abundant moisture, whereas shallow-rooted shrubs are adapted to use water deposited mainly by small rainfall events. Wood density was a good predictor of hydraulic conductivity and SLA. Overall, we found that shallow rooted species had efficient water transport in terms of high specific and leaf specific hydraulic conductivity, low rho(w), high SLA and a low minimum Psi(Leaf) that exhibited strong seasonal changes, whereas deeply rooted shrubs maintained similar minimum Psi(Leaf) throughout the year, had stems with high rho(w) and low hydraulic conductivity and leaves with low SLA. These two hydraulic syndromes were the extremes of a continuum with several species occupying different portions of a gradient in hydraulic characteristics. It appears that the marginal cost of having an extensive root system (e.g., high rho(w) and root hydraulic resistance) contributes to low growth rates of the deeply rooted species.


Assuntos
Adaptação Biológica/fisiologia , Desenvolvimento Vegetal , Raízes de Plantas/crescimento & desenvolvimento , Solo/análise , Água/metabolismo , Argentina , Folhas de Planta/anatomia & histologia , Transpiração Vegetal/fisiologia , Especificidade da Espécie
16.
Tree Physiol ; 29(5): 697-705, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19324702

RESUMO

Rhizophora mangle L. trees of Biscayne National Park (Florida, USA) have two distinct growth forms: tall trees (5-10 m) growing along the coast and dwarf trees (1 m or less) growing in the adjacent inland zone. Sharp decreases in salinity and thus increases in soil water potential from surface soil to about a depth of 1 m were found at the dwarf mangrove site but not at the tall mangrove site. Consistent with our prediction, hydraulic redistribution detected by reverse sap flow in shallow prop roots was observed during nighttime, early morning and late afternoon in dwarf trees, but not in tall trees. In addition, hydraulic redistribution was observed throughout the 24-h period during a low temperature spell. Dwarf trees had significantly lower sapwood-specific hydraulic conductivity, smaller stem vessel diameter, lower leaf area to sapwood area ratio (LA/SA), smaller leaf size and higher leaf mass per area. Leaves of dwarf trees had lower CO(2) assimilation rate and lower stomatal conductance compared to tall trees. Leaf water potentials at midday were more negative in tall trees that are consistent with their substantially higher stomatal conductance and LA/SA. The substantially lower water transport efficiency and the more conservative water use of dwarf trees may be due to a combination of factors such as high salinity in the surface soil, particularly during dry periods, and substantial reverse sap flow in shallow roots that make upper soil layers with high salinity a competing sink of water to the transpiring leaves. There may also be a benefit for the dwarf trees in having hydraulic redistribution because the reverse flow and the release of water to upper soil layers should lead to dilution of the high salinity in the rhizosphere and thus relieve its potential harm to dwarf R. mangle trees.


Assuntos
Dióxido de Carbono/metabolismo , Rhizophoraceae/metabolismo , Solo , Água/metabolismo , Transporte Biológico/fisiologia , Osmose , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Caules de Planta/anatomia & histologia , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Rhizophoraceae/anatomia & histologia , Rhizophoraceae/fisiologia , Xilema/anatomia & histologia , Xilema/metabolismo , Xilema/fisiologia
17.
Tree Physiol ; 28(3): 395-404, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18171663

RESUMO

Biologists have long been puzzled by the striking morphological and anatomical characteristics of Neotropical savanna trees which have large scleromorphic leaves, allocate more than half of their total biomass to belowground structures and produce new leaves during the peak of the dry season. Based on results of ongoing interdisciplinary projects in the savannas of central Brazil (cerrado), we reassessed the validity of six paradigms to account for the water economy of savanna vegetation. (1) All savanna woody species are similar in their ability to take up water from deep soil layers where its availability is relatively constant throughout the year. (2) There is no substantial competition between grasses and trees for water resources during the dry season because grasses exclusively explore upper soil layers, whereas trees access water in deeper soil layers. (3) Tree species have access to abundant groundwater, their stomatal control is weak and they tend to transpire freely. (4) Savanna trees experience increased water deficits during the dry season despite their access to deep soil water. (5) Stomatal conductance of savanna species is low at night to prevent nocturnal transpiration, particularly during the dry season. (6) Savanna tree species can be classified into functional groups according to leaf phenology. We evaluated each paradigm and found differences in the patterns of water uptake between deciduous and evergreen tree species, as well as among evergreen tree species, that have implications for regulation of tree water balance. The absence of resource interactions between herbaceous and woody plants is refuted by our observation that herbaceous plants use water from deep soil layers that is released by deep-rooted trees into the upper soil layer. We obtained evidence of strong stomatal control of transpiration and show that most species exhibit homeostasis in maximum water deficit, with midday water potentials being almost identical in the wet and dry seasons. Although stomatal control is strong during the day, nocturnal transpiration is high during the dry season. Our comparative studies showed that the grouping of species into functional categories is somewhat arbitrary and that ranking species along continuous functional axes better represents the ecological complexity of adaptations of cerrado woody species to their seasonal environment.


Assuntos
Raízes de Plantas/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Árvores/metabolismo , Água/metabolismo , Brasil , Ritmo Circadiano/fisiologia , Ecossistema , Raízes de Plantas/anatomia & histologia , Poaceae/fisiologia , Estações do Ano , Solo , Árvores/anatomia & histologia , Árvores/classificação , Clima Tropical
18.
Oecologia ; 155(3): 405-15, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18049826

RESUMO

Leaf and stem functional traits related to plant water relations were studied for six congeneric species pairs, each composed of one tree species typical of savanna habitats and another typical of adjacent forest habitats, to determine whether there were intrinsic differences in plant hydraulics between these two functional types. Only individuals growing in savanna habitats were studied. Most stem traits, including wood density, the xylem water potential at 50% loss of hydraulic conductivity, sapwood area specific conductivity, and leaf area specific conductivity did not differ significantly between savanna and forest species. However, maximum leaf hydraulic conductance (K (leaf)) and leaf capacitance tended to be higher in savanna species. Predawn leaf water potential and leaf mass per area were also higher in savanna species in all congeneric pairs. Hydraulic vulnerability curves of stems and leaves indicated that leaves were more vulnerable to drought-induced cavitation than terminal branches regardless of genus. The midday K (leaf) values estimated from leaf vulnerability curves were very low implying that daily embolism repair may occur in leaves. An electric circuit analog model predicted that, compared to forest species, savanna species took longer for their leaf water potentials to drop from predawn values to values corresponding to 50% loss of K (leaf) or to the turgor loss points, suggesting that savanna species were more buffered from changes in leaf water potential. The results of this study suggest that the relative success of savanna over forest species in savanna is related in part to their ability to cope with drought, which is determined more by leaf than by stem hydraulic traits. Variation among genera accounted for a large proportion of the total variance in most traits, which indicates that, despite different selective pressures in savanna and forest habitats, phylogeny has a stronger effect than habitat in determining most hydraulic traits.


Assuntos
Ecossistema , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Árvores/fisiologia , Água/fisiologia , Adaptação Fisiológica , Brasil , Hymenaea/fisiologia , Melastomataceae/fisiologia , Primulaceae/fisiologia , Styrax/fisiologia , Clima Tropical
19.
Plant Cell Environ ; 30(2): 236-48, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17238914

RESUMO

Biophysical characteristics of sapwood and outer parenchyma water storage compartments were studied in stems of eight dominant Brazilian Cerrado tree species to assess the impact of differences in tissue capacitance on whole-plant water relations. The rate of decline in tissue water potential with relative water content (RWC) was greater in the outer parenchyma than in the sapwood for most of the species, resulting in tissue-and species-specific differences in capacitance. Sapwood capacitance on a tissue volume basis ranged from 40 to 160 kg m-3 MPa-1, whereas outer parenchyma capacitance ranged from 25 to only 60 kg m-3 MPa-1. In addition, osmotic potentials at full turgor and at the turgor loss point were more negative for the outer parenchyma compared with the sapwood, and the maximum bulk elastic modulus was higher for the outer parenchyma than for the sapwood. Sapwood capacitance decreased linearly with increasing sapwood density across species, but there was no significant correlation between outer parenchyma capacitance and tissue density. Midday leaf water potential, the total hydraulic conductance of the soil/leaf pathway and stomatal conductance to water vapour (gs) all increased with stem volumetric capacitance, or with the relative contribution of stored water to total daily transpiration. However, the difference between the pre-dawn water potential of non-transpiring leaves and the weighted average soil water potential, a measure of the water potential disequilibrium between the plant and soil, increased asymptotically with total stem capacitance across species, implying that overnight recharge of water storage compartments was incomplete in species with greater capacitance. Overall, stem capacitance contributes to homeostasis in the diurnal and seasonal water balance of Cerrado trees.


Assuntos
Caules de Planta/metabolismo , Árvores/metabolismo , Madeira/metabolismo , Fenômenos Biomecânicos , Ritmo Circadiano/fisiologia , Ecossistema , Pressão Osmótica , Folhas de Planta/metabolismo , Transpiração Vegetal/fisiologia
20.
Tree Physiol ; 27(4): 551-9, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17241997

RESUMO

Under certain environmental conditions, nocturnal transpiration can be relatively high in temperate and tropical woody species. We have previously shown that nocturnal sap flow accounts for up to 28% of total daily transpiration in woody species growing in a nutrient-poor Brazilian Cerrado ecosystem. In the present study, we assessed the effect of increased nutrient supply on nocturnal transpiration in three dominant Cerrado tree species to explore the hypothesis that, in nutrient-poor systems, continued transpiration at night may enhance delivery of nutrients to root-absorbing surfaces. We compared nocturnal transpiration of trees growing in unfertilized plots and plots to which nitrogen (N) and phosphorus (P) had been added twice yearly from 1998 to 2005. Three independent indicators of nocturnal transpiration were evaluated: sap flow in terminal branches, stomatal conductance (g(s)), and disequilibrium in water potential between covered and exposed leaves (DeltaPsi(L)). In the unfertilized trees, about 25% of the total daily sap flow occurred at night. Nocturnal sap flow was consistently lower in the N- and P-fertilized trees, significantly so in trees in the N treatment. Similarly, nocturnal g(s) was consistently lower in fertilized trees than in unfertilized trees where it sometimes reached values of 150 mmol m(-2) s(-1) by the end of the dark period. Predawn gs and the percentage of nocturnal sap flow were linearly related. Nocturnal DeltaPsi(L) was significantly greater in the unfertilized trees than in N- and P-fertilized trees. The absolute magnitude of DeltaPsi(L) increased linearly with the percentage of nocturnal sap flow. These results are consistent with the idea that enhancing nutrient uptake by allowing additional transpiration to occur at night when evaporative demand is lower may avoid excessive dehydration associated with increased stomatal opening during the day when evaporative demand is high.


Assuntos
Transpiração Vegetal/fisiologia , Árvores/fisiologia , Brasil , Ritmo Circadiano , Escuridão , Ecossistema , Fertilizantes , Folhas de Planta/fisiologia , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...