Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Work Expo Health ; 67(9): 1069-1080, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37738587

RESUMO

A pooled analysis of vibration-induced white finger (VWF) in population groups of workers has been performed using the results of a published meta-analysis as source material (Nilsson T, Wahlström J, Burström L. Hand-arm vibration and the risk of vascular and neurological diseases a systematic review and meta-analysis. PLoS One. 2017:12(7):e0180795. https://doi.org/10.1371/journal.pone.0180795). The methods of data selection follow those described previously by Scholz et al. (in Scholz MF, Brammer AJ, Marburg S. Exposure-response relation for vibration-induced white finger: inferences from a published meta-analysis of population groups. Int Arch Occup Environ Health. 2023a:96(5):757-770. https://doi.org/10.1007/s00420-023-01965-w) to enable comparison with the results of the present work. The analyzed epidemiologic studies contain different prevalences of VWF observed after different durations of employment involving exposure to the vibration of power tools and machines. These prevalences are transformed to 10% prevalence by either linear or polynomial (i.e. "S"-shaped curvilinear) interpolation in order to compare with the exposure-response relation contained in the relevant international standard (ISO 5349-1:2001). An exposure-response relation is constructed using regression analysis for the time (in years) to reach 10% prevalence in a population group, when subjected to a daily vibration exposure calculated according to the procedures specified in the standard, A(8). Good fits to the data are obtained when polynomial and linear prevalence interpolation is used. The 95-percentile confidence intervals (CIs) of the exposure-response relation predicted by polynomial prevalence interpolation lie at somewhat larger lifetime exposures than those obtained by linear prevalence interpolation. Uncertainty in the precision of polynomial prevalence interpolation is mitigated by giving equal weight to linear interpolation when interpreting the results. When the 95-percentile CIs of the exposure-response models obtained by linear and polynomial prevalence interpolation are used to define the most probable exposure-response relation, the resulting common range of values includes the ISO exposure-response relation. It is proposed that an exposure-response relation for the onset of VWF derived from a regression analysis is specified in terms of the lower limit of its CI. Hence, when exposure measures are constructed according to the ISO standard and equal weight is given to the results of the 2 methods for interpolating prevalence described here, the ISO exposure-response relation would be considered to provide a conservative estimate for a 10% prevalence of VWF to develop in a population group, at least for A(8) > 4 m/s2. It thus remains the relation to use for assessing exposure to hand-transmitted vibration in the workplace. Additional research is needed to resolve inconsistencies in the ISO method for calculating daily exposures.


Assuntos
Exposição Ocupacional , Vibração , Humanos , Mãos , Prevalência , Vibração/efeitos adversos , Fator de von Willebrand , Metanálise como Assunto
2.
Int Arch Occup Environ Health ; 96(5): 757-770, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36976319

RESUMO

PURPOSE: It is questioned whether the exposure-response relation for the onset of vibration-induced white finger (VWF) in ISO 5349-1:2001 needs to be revised based on the epidemiologic studies identified by Nilsson et al. (PLoS One https://doi.org/10.1371/journal.pone.0180795 , 2017), and whether the relation they derive improves the prediction of VWF in vibration-exposed populations. METHODS: A pooled analysis has been performed using epidemiologic studies that complied with selection rules and reported a VWF prevalence of 10% or more, and exposure constructed according to the provisions of ISO 5349-1:2001. The lifetime exposures at 10% prevalence were calculated for various data sets using linear interpolation. They were then compared to both the model from the standard and that developed by Nilsson et al. RESULTS: Regression analyses reveal excluding extrapolation to adjust group prevalences to 10% produce models with 95-percentile confidence intervals that include the ISO exposure-response relation but not that in Nilsson et al. (2017). Different curve fits are obtained for studies involving daily exposure to single or multiple power tools and machines. Studies with similar exposure magnitudes and lifetime exposure durations but markedly different prevalences are observed to cluster. CONCLUSIONS: A range of exposures and A(8)-values is predicted within which the onset of VWF is most likely to occur. The exposure-response relation in ISO 5349-1:2001, but not that proposed by Nilsson et al., falls within this range and provides a conservative estimate for the development of VWF. In addition, the analyses suggest that the method for evaluating vibration exposure contained in ISO 5349-1:2001 needs revision.


Assuntos
Doenças Profissionais , Exposição Ocupacional , Doenças Vasculares , Humanos , Vibração/efeitos adversos , Grupos Populacionais , Fator de von Willebrand , Exposição Ocupacional/efeitos adversos , Doenças Profissionais/epidemiologia , Dedos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA