Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 13(1): e1006113, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28095489

RESUMO

Mosquitoes genetically engineered to be resistant to Plasmodium parasites represent a promising novel approach in the fight against malaria. The insect immune system itself is a source of anti-parasitic genes potentially exploitable for transgenic designs. The Anopheles gambiae thioester containing protein 1 (TEP1) is a potent anti-parasitic protein. TEP1 is secreted and circulates in the mosquito hemolymph, where its activated cleaved form binds and eliminates malaria parasites. Here we investigated whether TEP1 can be used to create malaria resistant mosquitoes. Using a GFP reporter transgene, we determined that the fat body is the main site of TEP1 expression. We generated transgenic mosquitoes that express TEP1r, a potent refractory allele of TEP1, in the fat body and examined the activity of the transgenic protein in wild-type or TEP1 mutant genetic backgrounds. Transgenic TEP1r rescued loss-of-function mutations, but did not increase parasite resistance in the presence of a wild-type susceptible allele. Consistent with previous reports, TEP1 protein expressed from the transgene in the fat body was taken up by hemocytes upon a challenge with injected bacteria. Furthermore, although maturation of transgenic TEP1 into the cleaved form was impaired in one of the TEP1 mutant lines, it was still sufficient to reduce parasite numbers and induce parasite melanization. We also report here the first use of Transcription Activator Like Effectors (TALEs) in Anopheles gambiae to stimulate expression of endogenous TEP1. We found that artificial elevation of TEP1 expression remains moderate in vivo and that enhancement of endogenous TEP1 expression did not result in increased resistance to Plasmodium. Taken together, our results reveal the difficulty of artificially influencing TEP1-mediated Plasmodium resistance, and contribute to further our understanding of the molecular mechanisms underlying mosquito resistance to Plasmodium parasites.


Assuntos
Anopheles/genética , Proteínas de Insetos/genética , Insetos Vetores/genética , Malária/parasitologia , Controle Biológico de Vetores/métodos , Animais , Animais Geneticamente Modificados , Western Blotting , Imuno-Histoquímica , Plasmodium berghei , Reação em Cadeia da Polimerase
2.
PLoS One ; 6(5): e19509, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21625585

RESUMO

TAL (transcription activator-like) effectors are translocated by Xanthomonas bacteria into plant cells where they activate transcription of target genes. DNA target sequence recognition occurs in a unique mode involving a central domain of tandem repeats. Each repeat recognizes a single base pair in a contiguous DNA sequence and a pair of adjacent hypervariable amino acid residues per repeat specifies which base is bound. Rearranging the repeats allows the design of novel TAL proteins with predictable DNA-recognition specificities. TAL protein-based transcriptional activation in plant cells is mediated by a C-terminal activation domain (AD). Here, we created synthetic TAL proteins with designed repeat compositions using a novel modular cloning strategy termed "Golden TAL Technology". Newly programmed TAL proteins were not only functional in plant cells, but also in human cells and activated targeted expression of exogenous as well as endogenous genes. Transcriptional activation in different human cell lines was markedly improved by replacing the TAL-AD with the VP16-AD of herpes simplex virus. The creation of TAL proteins with potentially any desired DNA-recognition specificity allows their versatile use in biotechnology.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteína Vmw65 do Vírus do Herpes Simples/genética , Interferon-alfa/metabolismo , Interferon beta/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ativação Transcricional , Proteínas Reguladoras de Apoptose/genética , Western Blotting , DNA/genética , Proteínas de Ligação a DNA/química , Células HeLa , Humanos , Interferon-alfa/genética , Interferon beta/genética , Rim/citologia , Rim/metabolismo , Luciferases/metabolismo , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/genética , Sequências Repetitivas de Aminoácidos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
3.
Curr Opin Microbiol ; 14(1): 47-53, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21215685

RESUMO

TAL (transcription activator-like) effectors constitute a novel class of DNA-binding proteins with predictable specificity. They are employed by Gram-negative plant-pathogenic bacteria of the genus Xanthomonas which translocate a cocktail of different effector proteins via a type III secretion system (T3SS) into plant cells where they serve as virulence determinants. Inside the plant cell, TALs localize to the nucleus, bind to target promoters, and induce expression of plant genes. DNA-binding specificity of TALs is determined by a central domain of tandem repeats. Each repeat confers recognition of one base pair (bp) in the DNA. Rearrangement of repeat modules allows design of proteins with desired DNA-binding specificities. Here, we summarize how TAL specificity is encoded, first structural data and first data on site-specific TAL nucleases.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ativação Transcricional , Xanthomonas/genética , Xanthomonas/metabolismo , Proteínas de Ligação a DNA/química , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Humanos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
4.
Virulence ; 1(5): 428-32, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21178484

RESUMO

TAL effectors are important virulence factors of bacterial plant pathogenic Xanthomonas, which infect a wide variety of plants including valuable crops like pepper, rice, and citrus. TAL proteins are translocated via the bacterial type III secretion system into host cells and induce transcription of plant genes by binding to target gene promoters. Members of the TAL effector family differ mainly in their central domain of tandemly arranged repeats of typically 34 amino acids each with hypervariable di-amino acids at positions 12 and 13. We recently showed that target DNA-recognition specificity of TAL effectors is encoded in a modular and clearly predictable mode. The repeats of TAL effectors feature a surprising one repeat-to-one-bp correlation with different repeat types exhibiting a different DNA base pair specificity. Accordingly, we predicted DNA specificities of TAL effectors and generated artificial TAL proteins with novel DNA recognition specificities. We describe here novel artificial TALs and discuss implications for the DNA recognition specificity. The unique TAL-DNA binding domain allows design of proteins with potentially any given DNA recognition specificity enabling many uses for biotechnology.


Assuntos
Proteínas de Bactérias/metabolismo , DNA/metabolismo , Doenças das Plantas/microbiologia , Fatores de Virulência/metabolismo , Xanthomonas/patogenicidade , Sequência de Aminoácidos , Variação Genética , Dados de Sequência Molecular , Plantas/microbiologia , Ligação Proteica , Estrutura Terciária de Proteína , Sequências Repetitivas de Aminoácidos/genética , Especificidade por Substrato
5.
Science ; 326(5959): 1509-12, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-19933107

RESUMO

The pathogenicity of many bacteria depends on the injection of effector proteins via type III secretion into eukaryotic cells in order to manipulate cellular processes. TAL (transcription activator-like) effectors from plant pathogenic Xanthomonas are important virulence factors that act as transcriptional activators in the plant cell nucleus, where they directly bind to DNA via a central domain of tandem repeats. Here, we show how target DNA specificity of TAL effectors is encoded. Two hypervariable amino acid residues in each repeat recognize one base pair in the target DNA. Recognition sequences of TAL effectors were predicted and experimentally confirmed. The modular protein architecture enabled the construction of artificial effectors with new specificities. Our study describes the functionality of a distinct type of DNA binding domain and allows the design of DNA binding domains for biotechnology.


Assuntos
Motivos de Aminoácidos , DNA de Plantas/química , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Ativação Transcricional , Xanthomonas/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Pareamento de Bases , Sequência de Bases , Biotecnologia , Capsicum/genética , Genes de Plantas , Modelos Biológicos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica , Sequências Repetitivas de Aminoácidos , Nicotiana/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Xanthomonas/patogenicidade
6.
Plant Physiol ; 150(4): 1697-712, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19448036

RESUMO

The pepper (Capsicum annuum) bacterial spot (Bs) resistance gene Bs3 and its allelic variant Bs3-E mediate recognition of the Xanthomonas campestris pv vesicatoria type III effector protein AvrBs3 and its deletion derivative AvrBs3Deltarep16. Recognition specificity resides in the Bs3 and Bs3-E promoters and is determined by a defined promoter region, the UPA (for up-regulated by AvrBs3) box. Using site-directed mutagenesis, we defined the exact boundaries of the UPA(AvrBs3) box of the Bs3 promoter and the UPA(AvrBs3Deltarep16) box of the Bs3-E promoter and show that both boxes overlap by at least 11 nucleotides. Despite partial sequence identity, the UPA(AvrBs3) box and the UPA(AvrBs3Deltarep16) box were bound specifically by the corresponding AvrBs3 and AvrBs3Deltarep16 proteins, respectively, suggesting that selective promoter binding of AvrBs3-like proteins is the basis for promoter activation specificity. We also demonstrate that the UPA(AvrBs3) box retains its functionality at different positions within the pepper Bs3 promoter and confers AvrBs3 inducibility in a novel promoter context. Notably, the transfer of the UPA(AvrBs3) box to different promoter locations is always correlated with a new transcriptional start site. The analysis of naturally occurring Bs3 alleles revealed many pepper accessions that encode a nonfunctional Bs3 variant. These accessions showed no apparent abnormalities, supporting the supposition that Bs3 functions only in disease resistance and not in other developmental or physiological processes.


Assuntos
Alelos , Proteínas de Bactérias/metabolismo , Capsicum/genética , Capsicum/microbiologia , Genes de Plantas , Regiões Promotoras Genéticas , Pareamento de Bases , Sequência de Bases , Capsicum/imunologia , DNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mutagênese Insercional , Mapeamento Físico do Cromossomo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Deleção de Sequência , Xanthomonas campestris/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...