Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Front Immunol ; 14: 1249581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37885896

RESUMO

Introduction: Q fever, caused by the intracellular bacterium Coxiella burnetii, is considered an occupational and biodefense hazard and can result in debilitating long-term complications. While natural infection and vaccination induce humoral and cellular immune responses, the exact nature of cellular immune responses to C. burnetii is incompletely understood. The current study seeks to investigate more deeply the nature of long-term cellular recall responses in naturally exposed individuals by both cytokine release assessment and cytometry profiling. Methods: Individuals exposed during the 2007-2010 Dutch Q fever outbreak were grouped in 2015, based on a C. burnetii-specific IFNγ release assay (IGRA), serological status, and self-reported clinical symptoms during initial infection, into asymptomatic IGRA-negative/seronegative controls, and three IGRA-positive groups (seronegative/asymptomatic; seropositive/asymptomatic and seropositive/symptomatic). Recall responses following in vitro re-stimulation with heat-inactivated C. burnetii in whole blood, were assessed in 2016/2017 by cytokine release assays (n=55) and flow cytometry (n=36), and in blood mononuclear cells by mass cytometry (n=36). Results: Cytokine release analysis showed significantly elevated IL-2 responses in all seropositive individuals and elevated IL-1ß responses in those recovered from symptomatic infection. Comparative flow cytometry analysis revealed significantly increased IFNγ, TNFα and IL-2 recall responses by CD4 T cells and higher IL-6 production by monocytes from symptomatic, IGRA-positive/seropositive individuals compared to controls. Mass cytometry profiling and unsupervised clustering analysis confirmed recall responses in seropositive individuals by two activated CD4 T cell subsets, one characterized by a strong Th1 cytokine profile (IFNγ+IL-2+TNFα+), and identified C. burnetii-specific activation of CD8 T cells in all IGRA-positive groups. Remarkably, increased C. burnetii-specific responses in IGRA-positive individuals were also observed in three innate cell subpopulations: one characterized by an IFNγ+IL-2+TNFα+ Th1 cytokine profile and lack of canonical marker expression, and two IL-1ß-, IL-6- and IL-8-producing CD14+ monocyte subsets that could be the drivers of elevated secretion of innate cytokines in pre-exposed individuals. Discussion: These data highlight that there are long-term increased responses to C. burnetii in both adaptive and innate cellular compartments, the latter being indicative of trained immunity. These findings warrant future studies into the protective role of these innate responses and may inform future Q fever vaccine design.


Assuntos
Coxiella burnetii , Febre Q , Humanos , Fator de Necrose Tumoral alfa , Interleucina-2 , Interleucina-6 , Citocinas , Imunidade Inata
2.
Front Immunol ; 13: 886698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812430

RESUMO

Q fever is a zoonotic disease caused by the highly infectious Gram-negative coccobacillus, Coxiella burnetii (C. burnetii). The Q fever vaccine Q-VAX® is characterised by high reactogenicity, requiring individuals to be pre-screened for prior exposure before vaccination. To date it remains unclear whether vaccine side effects in pre-exposed individuals are associated with pre-existing adaptive immune responses to C. burnetii or are also a function of innate responses to Q-VAX®. In the current study, we measured innate and adaptive cytokine responses to C. burnetii and compared these among individuals with different pre-exposure status. Three groups were included: n=98 Dutch blood bank donors with unknown exposure status, n=95 Dutch village inhabitants with known natural exposure status to C. burnetii during the Dutch Q fever outbreak of 2007-2010, and n=96 Australian students receiving Q-VAX® vaccination in 2021. Whole blood cytokine responses following ex vivo stimulation with heat-killed C. burnetii were assessed for IFNγ, IL-2, IL-6, IL-10, TNFα, IL-1ß, IP-10, MIP-1α and IL-8. Serological data were collected for all three cohorts, as well as data on skin test and self-reported vaccine side effects and clinical symptoms during past infection. IFNγ, IP-10 and IL-2 responses were strongly elevated in individuals with prior C. burnetii antigen exposure, whether through infection or vaccination, while IL-1ß, IL-6 and TNFα responses were slightly increased in naturally exposed individuals only. High dimensional analysis of the cytokine data identified four clusters of individuals with distinct cytokine response signatures. The cluster with the highest levels of adaptive cytokines and antibodies comprised solely individuals with prior exposure to C. burnetii, while another cluster was characterized by high innate cytokine production and an absence of C. burnetii-induced IP-10 production paired with high baseline IP-10 levels. Prior exposure status was partially associated with these signatures, but could not be clearly assigned to a single cytokine response signature. Overall, Q-VAX® vaccination and natural C. burnetii infection were associated with comparable cytokine response signatures, largely driven by adaptive cytokine responses. Neither individual innate and adaptive cytokine responses nor response signatures were associated retrospectively with clinical symptoms during infection or prospectively with side effects post-vaccination.


Assuntos
Coxiella burnetii , Febre Q , Austrália , Quimiocina CXCL10 , Citocinas , Humanos , Interleucina-2 , Interleucina-6 , Estudos Retrospectivos , Fator de Necrose Tumoral alfa , Vacinação/efeitos adversos
3.
Front Immunol ; 13: 901372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651616

RESUMO

T cell-mediated immunity plays a central role in the control and clearance of intracellular Coxiella burnetii infection, which can cause Q fever. Therefore, we aimed to develop a novel T cell-targeted vaccine that induces pathogen-specific cell-mediated immunity to protect against Q fever in humans while avoiding the reactogenicity of the current inactivated whole cell vaccine. Human HLA class II T cell epitopes from C. burnetii were previously identified and selected by immunoinformatic predictions of HLA binding, conservation in multiple C. burnetii isolates, and low potential for cross-reactivity with the human proteome or microbiome. Epitopes were selected for vaccine inclusion based on long-lived human T cell recall responses to corresponding peptides in individuals that had been naturally exposed to the bacterium during a 2007-2010 Q fever outbreak in the Netherlands. Multiple viral vector-based candidate vaccines were generated that express concatemers of selected epitope sequences arranged to minimize potential junctional neo-epitopes. The vaccine candidates caused no antigen-specific reactogenicity in a sensitized guinea pig model. A subset of the vaccine epitope peptides elicited antigenic recall responses in splenocytes from C57BL/6 mice previously infected with C. burnetii. However, immunogenicity of the vaccine candidates in C57BL/6 mice was dominated by a single epitope and this was insufficient to confer protection against an infection challenge, highlighting the limitations of assessing human-targeted vaccine candidates in murine models. The viral vector-based vaccine candidates induced antigen-specific T cell responses to a broader array of epitopes in cynomolgus macaques, establishing a foundation for future vaccine efficacy studies in this large animal model of C. burnetii infection.


Assuntos
Coxiella burnetii , Febre Q , Animais , Anticorpos Antibacterianos , Vacinas Bacterianas , Modelos Animais de Doenças , Epitopos de Linfócito T , Cobaias , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos , Febre Q/prevenção & controle , Linfócitos T
4.
Front Immunol ; 12: 701811, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394097

RESUMO

For the zoonotic disease Q fever, serological analysis plays a dominant role in the diagnosis of Coxiella burnetii infection and in pre-screening for past exposure prior to vaccination. A number of studies suggest that assessment of C. burnetii-specific T-cell IFNγ responses may be a more sensitive tool to assess past exposure. In this study, we assessed the performance of a whole blood C. burnetii IFNγ release assay in comparison to serological detection in an area of high Q fever incidence in 2014, up to seven years after initial exposure during the Dutch Q fever outbreak 2007-2010. In a cohort of >1500 individuals from the Dutch outbreak village of Herpen, approximately 60% had mounted IFNγ responses to C. burnetii. This proportion was independent of the Coxiella strain used for stimulation and much higher than the proportion of individuals scored sero-positive using the serological gold standard immunofluorescence assay. Moreover, C. burnetii-specific IFNγ responses were found to be more durable than antibody responses in two sub-groups of individuals known to have sero-converted as of 2007 or previously reported to the municipality as notified Q fever cases. A novel ready-to-use version of the IFNγ release assay assessed in a subgroup of pre-exposed individuals in 2021 (10-14 years post exposure) proved again to be more sensitive than serology in detecting past exposure. These data demonstrate that C. burnetii-induced IFNγ release is indeed a more sensitive and durable marker of exposure to C. burnetii than are serological responses. In combination with a simplified assay version suitable for implementation in routine diagnostic settings, this makes the assessment of IFNγ responses a valuable tool for exposure screening to obtain epidemiological data, and to identify previously exposed individuals in pre-vaccination screens.


Assuntos
Anticorpos Antibacterianos/imunologia , Formação de Anticorpos/imunologia , Biomarcadores/sangue , Coxiella burnetii/imunologia , Interferon gama/sangue , Interferon gama/imunologia , Animais , Estudos Transversais , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Febre Q/sangue , Febre Q/imunologia , Febre Q/microbiologia , Zoonoses/sangue , Zoonoses/imunologia , Zoonoses/microbiologia
5.
Infect Dis (Lond) ; 53(7): 498-512, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33684020

RESUMO

BACKGROUND: Serological testing in the COVID-19 pandemic is mainly implemented to gain sero-epidemiological data, but can also retrospectively inform about suspected SARS-CoV-2 infection. METHOD: We verified and applied a two-tiered testing strategy combining a SARS-CoV-2 receptor-binding domain (RBD)-specific lateral flow assay (LFA) with a nucleocapsid protein (NCP) IgG ELISA to assess seroconversion in n = 7241 individuals. The majority had experienced symptoms consistent with COVID-19, but had no access to RT-PCR testing. Longitudinal follow-up in n = 97 LFA + individuals was performed up to 20 weeks after initial infection using NCP and spike protein S1 domain (S1) IgG ELISAs and a surrogate virus neutralization test (sVNT). RESULTS: Individuals reporting symptoms from January 2020 onwards showed seroconversion, as did a considerable proportion of asymptomatic individuals. Seroconversion for symptomatic and asymptomatic individuals was higher in an area with a known infection cluster compared to a low incidence area. Overall, 94% of individuals with a positive IgG result by LFA were confirmed by NCP ELISA. The proportion of ELISA-confirmed LFA results declined over time, in line with contracting NCP IgG titres during longitudinal follow-up. Neutralizing antibody activity was considerably more stable than S1 and NCP IgG titres, and both reach a plateau after approximately 100 d. The sVNT proved to be not only highly specific, but also more sensitive than the specificity-focussed two-tiered serology approach. CONCLUSIONS: Our results demonstrate the high specificity of two-tiered serology testing and highlight the sVNT used as a valuable tool to support modelling of SARS-CoV-2 transmission dynamics, complement molecular testing and provide relevant information to individuals.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Países Baixos/epidemiologia , Nucleocapsídeo , Pandemias , Domínios Proteicos , Estudos Retrospectivos , Sensibilidade e Especificidade , Soroconversão , Glicoproteína da Espícula de Coronavírus
6.
Sci Transl Med ; 12(543)2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404508

RESUMO

Identifying immune correlates of protection and mechanisms of immunity accelerates and streamlines the development of vaccines. RTS,S/AS01E, the most clinically advanced malaria vaccine, has moderate efficacy in African children. In contrast, immunization with sporozoites under antimalarial chemoprophylaxis (CPS immunization) can provide 100% sterile protection in naïve adults. We used systems biology approaches to identifying correlates of vaccine-induced immunity based on transcriptomes of peripheral blood mononuclear cells from individuals immunized with RTS,S/AS01E or chemoattenuated sporozoites stimulated with parasite antigens in vitro. Specifically, we used samples of individuals from two age cohorts and three African countries participating in an RTS,S/AS01E pediatric phase 3 trial and malaria-naïve individuals participating in a CPS trial. We identified both preimmunization and postimmunization transcriptomic signatures correlating with protection. Signatures were validated in independent children and infants from the RTS,S/AS01E phase 3 trial and individuals from an independent CPS trial with high accuracies (>70%). Transcription modules revealed interferon, NF-κB, Toll-like receptor (TLR), and monocyte-related signatures associated with protection. Preimmunization signatures suggest that priming the immune system before vaccination could potentially improve vaccine immunogenicity and efficacy. Last, signatures of protection could be useful to determine efficacy in clinical trials, accelerating vaccine candidate testing. Nevertheless, signatures should be tested more extensively across multiple cohorts and trials to demonstrate their universal predictive capacity.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Adulto , África , Anticorpos Antiprotozoários , Criança , Humanos , Imunização , Lactente , Leucócitos Mononucleares , Malária/prevenção & controle , Malária Falciparum/prevenção & controle , Plasmodium falciparum
7.
Infect Immun ; 87(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31331958

RESUMO

Infection with Coxiella burnetii, the causative agent of Q fever, can result in life-threatening persistent infection. Reactogenicity hinders worldwide implementation of the only licensed human Q fever vaccine. We previously demonstrated long-lived immunoreactivity in individuals with past symptomatic and asymptomatic Coxiella infection (convalescents) to promiscuous HLA class II C. burnetii epitopes, providing the basis for a novel T-cell targeted subunit vaccine. In this study, we investigated in a cohort of 22 individuals treated for persistent infection (chronic Q fever) whether they recognize the same set of epitopes or distinct epitopes that could be candidates for a therapeutic vaccine or aid in the diagnosis of persistent infection. In cultured enzyme-linked immunosorbent spot (ELISpot) assays, individuals with chronic Q fever showed strong class II epitope-specific responses that were largely overlapping with the peptide repertoire identified previously for convalescents. Five additional peptides were recognized more frequently by chronic subjects, but there was no combination of epitopes uniquely recognized by or nonreactive in subjects with chronic Q fever. Consistent with more recent/prolonged exposure, we found, however, stronger ex vivo responses by direct ELISpot to both whole-cell C. burnetii and individual peptides in chronic patients than in convalescents. In conclusion, we have validated and expanded a previously published set of candidate epitopes for a novel T-cell targeted subunit Q fever vaccine in treated patients with chronic Q fever and demonstrated that they successfully mounted a T-cell response comparable to that of convalescents. Finally, we demonstrated that individuals treated for chronic Q fever mount a broader ex vivo response to class II epitopes than convalescents, which could be explored for diagnostic purposes.


Assuntos
Anticorpos Antibacterianos/biossíntese , Antígenos de Bactérias/imunologia , Coxiella burnetii/imunologia , Epitopos de Linfócito T/imunologia , Febre Q/imunologia , Idoso , Antibacterianos/uso terapêutico , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Doença Crônica , Convalescença , Coxiella burnetii/patogenicidade , ELISPOT , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Feminino , Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Teste de Histocompatibilidade , Humanos , Interferon gama/genética , Interferon gama/imunologia , Masculino , Pessoa de Meia-Idade , Peptídeos/genética , Peptídeos/imunologia , Febre Q/tratamento farmacológico , Febre Q/genética , Febre Q/prevenção & controle , Linfócitos T/imunologia , Linfócitos T/microbiologia
8.
Front Immunol ; 10: 207, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30828331

RESUMO

Coxiella burnetii, the causative agent of Q fever, is a Gram-negative intracellular bacterium transmitted via aerosol. Regulatory approval of the Australian whole-cell vaccine Q-VAX® in the US and Europe is hindered by reactogenicity in previously exposed individuals. The aim of this study was to identify and rationally select C. burnetii epitopes for design of a safe, effective, and less reactogenic T-cell targeted human Q fever vaccine. Immunoinformatic methods were used to predict 65 HLA class I epitopes and 50 promiscuous HLA class II C. burnetii epitope clusters, which are conserved across strains of C. burnetii. HLA binding assays confirmed 89% of class I and 75% of class II predictions, and 11 HLA class II epitopes elicited IFNγ responses following heterologous DNA/DNA/peptide/peptide prime-boost immunizations of HLA-DR3 transgenic mice. Human immune responses to the predicted epitopes were characterized in individuals naturally exposed to C. burnetii during the 2007-2010 Dutch Q fever outbreak. Subjects were divided into three groups: controls with no immunological evidence of previous infection and individuals with responses to heat-killed C. burnetii in a whole blood IFNγ release assay (IGRA) who remained asymptomatic or who experienced clinical Q fever during the outbreak. Recall responses to C. burnetii epitopes were assessed by cultured IFNγ ELISpot. While HLA class I epitope responses were sparse in this cohort, we identified 21 HLA class II epitopes that recalled T-cell IFNγ responses in 10-28% of IGRA+ subjects. IGRA+ individuals with past asymptomatic and symptomatic C. burnetii infection showed a comparable response pattern and cumulative peptide response which correlated with IGRA responses. None of the peptides elicited reactogenicity in a C. burnetii exposure-primed guinea pig model. These data demonstrate that a substantial proportion of immunoinformatically identified HLA class II epitopes show long-lived immunoreactivity in naturally infected individuals, making them desirable candidates for a novel human multi-epitope Q fever vaccine.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Coxiella burnetii/imunologia , Epitopos de Linfócito T/imunologia , Memória Imunológica , Febre Q/imunologia , Animais , Vacinas Bacterianas/imunologia , Biomarcadores , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , ELISPOT , Cobaias , Antígenos HLA/imunologia , Antígenos HLA/metabolismo , Humanos , Imunização , Imunogenicidade da Vacina , Interferon gama/biossíntese , Febre Q/metabolismo , Febre Q/prevenção & controle
9.
mSphere ; 4(1)2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787114

RESUMO

Immunization with sporozoites under chloroquine chemoprophylaxis (CPS) induces distinctly preerythrocytic and long-lasting sterile protection against homologous controlled human malaria infection (CHMI). To identify possible humoral immune correlates of protection, plasma samples were collected from 38 CPS-immunized Dutch volunteers for analysis using a whole Plasmodium falciparum proteome microarray with 7,455 full-length or segmented protein features displaying about 91% of the total P. falciparum proteome. We identified 548 reactive antigens representing 483 unique proteins. Using the breadth of antibody responses for each subject in a mixture-model algorithm, we observed a trimodal pattern, with distinct groups of 16 low responders, 19 medium responders, and 3 high responders. Fifteen out of 16 low responders, 12 of the 19 medium responders, and 3 out of 3 high responders were fully protected from a challenge infection. In the medium-responder group, we identified six novel antigens associated with protection (area under the curve [AUC] value of ≥0.75; P < 0.05) and six other antigens that were specifically increased in nonprotected volunteers (AUC value of ≤0.25; P < 0.05). When used in combination, the multiantigen classifier predicts CPS-induced protective efficacy with 83% sensitivity and 88% specificity. The antibody response patterns characterized in this study represent surrogate markers that may provide rational guidance for clinical vaccine development.IMPORTANCE Infection by Plasmodium parasites has been a major cause of mortality and morbidity in humans for thousands of years. Despite the considerable reduction of deaths, according to the WHO, over 5 billion people are still at risk, with about 216 million worldwide cases occurring in 2016. More compelling, 15 countries in sub-Saharan Africa bore 80% of the worldwide malaria burden. Complete eradication has been challenging, and the development of an affordable and effective vaccine will go a long way in achieving elimination. However, identifying vaccine candidate targets has been difficult. In the present study, we use a highly effective immunization protocol that confers long-lasting sterile immunity in combination with a whole P. falciparum proteome microarray to identify antibody responses associated with protection. This study characterizes a novel antibody profile associated with sterile protective immunity and trimodal humoral responses that sheds light on the possible mechanism of CPS-induced immunity against P. falciparum parasites.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Antimaláricos/administração & dosagem , Biomarcadores/sangue , Cloroquina/administração & dosagem , Malária Falciparum/imunologia , Ensaios Clínicos como Assunto , Voluntários Saudáveis , Humanos , Imunidade Humoral , Malária Falciparum/sangue , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Análise Serial de Proteínas , Proteoma , Esporozoítos/imunologia
10.
Eur J Clin Microbiol Infect Dis ; 37(7): 1385-1391, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29804281

RESUMO

Approximately 20% of patients with acute Q fever develop Q fever fatigue syndrome (QFS), a debilitating fatigue syndrome. This study further investigates the role of C. burnetii-specific IFNγ, but also IL-2, CXCL9, CXCL10, and CXLC11 production in QFS patients. C. burnetii-specific IFNy, IL-2, CXCL9, CXCL10, and CXCL11 production were tested in ex vivo stimulated whole blood of QFS patients who recovered from their complaints (n = 8), QFS patients with persisting complaints (n = 27), and asymptomatic Q fever seropositive controls (n = 10). With the exclusion of one outlier, stimulation with C. burnetii revealed significantly higher IFNy and CXCL10 production in QFS patients with persisting complaints (medians 288.0 and 176.0 pg/mL, respectively) than in QFS patients who recovered from their complaints (medians 93.0 and 85.5 pg/mL, respectively) (p = 0.041 and 0.045, respectively). No significant differences between groups were found for C. burnetii-specific IL-2, CXCL9, and CXCL11 production. These findings point towards a difference in cell-mediated immunity in QFS patients with persisting complaints compared to those who recovered from their complaints. Such a difference may aid to eventually diagnose QFS more objectively and might serve as an indicator of its underlying etiology.


Assuntos
Quimiocina CXCL10/sangue , Síndrome de Fadiga Crônica/sangue , Síndrome de Fadiga Crônica/diagnóstico , Interferon gama/sangue , Febre Q/sangue , Febre Q/patologia , Biomarcadores/sangue , Quimiocina CXCL11/sangue , Quimiocina CXCL9/sangue , Coxiella burnetii/imunologia , Feminino , Humanos , Imunidade Celular/imunologia , Masculino , Pessoa de Meia-Idade , Febre Q/diagnóstico
11.
Infect Immun ; 86(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29735521

RESUMO

Long-lasting and sterile homologous protection against malaria can be achieved by the exposure of malaria-naive volunteers under chemoprophylaxis to Plasmodium falciparum-infected mosquitoes (chemoprophylaxis and sporozoite [CPS] immunization). While CPS-induced antibodies neutralize sporozoite infectivity in vitro and in vivo, antibody-mediated effector mechanisms are still poorly understood. Here, we investigated whether complement contributes to CPS-induced preerythrocytic immunity. Sera collected before and after CPS immunization in the presence of active or inactive complement were assessed for the recognition of homologous NF54 and heterologous NF135.C10 sporozoites, complement fixation, sporozoite lysis, and possible subsequent effects on in vitro sporozoite infectivity in human hepatocytes. CPS immunization induced sporozoite-specific IgM (P < 0.0001) and IgG (P = 0.001) antibodies with complement-fixing capacities (P < 0.0001). Sporozoite lysis (P = 0.017), traversal (P < 0.0001), and hepatocyte invasion inhibition (P < 0.0001) by CPS-induced antibodies were strongly enhanced in the presence of active complement. Complement-mediated invasion inhibition in the presence of CPS-induced antibodies negatively correlated with cumulative parasitemia during CPS immunizations (P = 0.013). While IgG antibodies similarly recognized homologous and heterologous sporozoites, IgM binding to heterologous sporozoites was reduced (P = 0.023). Although CPS-induced antibodies did not differ in their abilities to fix complement, lyse sporozoites, or inhibit the traversal of homologous and heterologous sporozoites, heterologous sporozoite invasion was more strongly inhibited in the presence of active complement (P = 0.008). These findings demonstrate that CPS-induced antibodies have complement-fixing activity, thereby significantly further enhancing the functional inhibition of homologous and heterologous sporozoite infectivity in vitro The combined data highlight the importance of complement as an additional immune effector mechanism in preerythrocytic immunity after whole-parasite immunization against Plasmodium falciparum malaria.


Assuntos
Formação de Anticorpos/fisiologia , Antimaláricos/imunologia , Antimaláricos/uso terapêutico , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/imunologia , Esporozoítos/efeitos dos fármacos , Formação de Anticorpos/imunologia , Humanos , Imunização , Esporozoítos/imunologia , Vacinação
12.
Immunity ; 48(2): 350-363.e7, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29426701

RESUMO

Despite evidence that γδ T cells play an important role during malaria, their precise role remains unclear. During murine malaria induced by Plasmodium chabaudi infection and in human P. falciparum infection, we found that γδ T cells expanded rapidly after resolution of acute parasitemia, in contrast to αß T cells that expanded at the acute stage and then declined. Single-cell sequencing showed that TRAV15N-1 (Vδ6.3) γδ T cells were clonally expanded in mice and had convergent complementarity-determining region 3 sequences. These γδ T cells expressed specific cytokines, M-CSF, CCL5, CCL3, which are known to act on myeloid cells, indicating that this γδ T cell subset might have distinct functions. Both γδ T cells and M-CSF were necessary for preventing parasitemic recurrence. These findings point to an M-CSF-producing γδ T cell subset that fulfills a specialized protective role in the later stage of malaria infection when αß T cells have declined.


Assuntos
Fator Estimulador de Colônias de Macrófagos/fisiologia , Malária/prevenção & controle , Receptores de Antígenos de Linfócitos T gama-delta/fisiologia , Subpopulações de Linfócitos T/imunologia , Animais , Feminino , Humanos , Ativação Linfocitária , Malária/imunologia , Camundongos , Parasitemia/prevenção & controle , Recidiva
13.
FASEB J ; 32(1): 5-15, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29092906

RESUMO

Mass cytometry enables highly multiplexed profiling of cellular immune responses in limited-volume samples, advancing prospects of a new era of systems immunology. The capabilities of mass cytometry offer expanded potential for deciphering immune responses to infectious diseases and to vaccines. Several studies have used mass cytometry to profile protective immune responses, both postinfection and postvaccination, although no vaccine-development program has yet systematically employed the technology from the outset to inform both candidate design and clinical evaluation. In this article, we review published mass cytometry studies relevant to vaccine development, briefly compare immune profiling by mass cytometry to other systems-level technologies, and discuss some general considerations for deploying mass cytometry in the context of vaccine development.-Reeves, P. M., Sluder, A. E., Raju Paul, S., Scholzen, A., Kashiwagi, S., Poznansky, M. C. Application and utility of mass cytometry in vaccine development.


Assuntos
Citometria de Fluxo/métodos , Vacinas/imunologia , Animais , Anticorpos , Interpretação Estatística de Dados , Descoberta de Drogas , Citometria de Fluxo/estatística & dados numéricos , Corantes Fluorescentes , Perfilação da Expressão Gênica , Humanos , Imunidade Celular , Vacinas contra Influenza/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Análise de Célula Única , Biologia de Sistemas
14.
NPJ Vaccines ; 2: 27, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29263882

RESUMO

A malaria vaccine that prevents infection will be an important new tool in continued efforts of malaria elimination, and such vaccines are under intense development for the major human malaria parasite Plasmodium falciparum (Pf). Antibodies elicited by vaccines can block the initial phases of parasite infection when sporozoites are deposited into the skin by mosquito bite and then target the liver for further development. However, there are currently no standardized in vivo preclinical models that can measure the inhibitory activity of antibody specificities against Pf sporozoite infection via mosquito bite. Here, we use human liver-chimeric mice as a challenge model to assess prevention of natural Pf sporozoite infection by antibodies. We demonstrate that these mice are consistently infected with Pf by mosquito bite and that this challenge can be combined with passive transfer of either monoclonal antibodies or polyclonal human IgG from immune serum to measure antibody-mediated blocking of parasite infection using bioluminescent imaging. This methodology is useful to down-select functional antibodies and to investigate mechanisms or immune correlates of protection in clinical trials, thereby informing rational vaccine optimization.

15.
BMC Med ; 15(1): 168, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28903777

RESUMO

BACKGROUND: A highly efficacious vaccine is needed for malaria control and eradication. Immunization with Plasmodium falciparum NF54 parasites under chemoprophylaxis (chemoprophylaxis and sporozoite (CPS)-immunization) induces the most efficient long-lasting protection against a homologous parasite. However, parasite genetic diversity is a major hurdle for protection against heterologous strains. METHODS: We conducted a double-blind, randomized controlled trial in 39 healthy participants of NF54-CPS immunization by bites of 45 NF54-infected (n = 24 volunteers) or uninfected mosquitoes (placebo; n = 15 volunteers) against a controlled human malaria infection with the homologous NF54 or the genetically distinct NF135.C10 and NF166.C8 clones. Cellular and humoral immune assays were performed as well as genetic characterization of the parasite clones. RESULTS: NF54-CPS immunization induced complete protection in 5/5 volunteers against NF54 challenge infection at 14 weeks post-immunization, but sterilely protected only 2/10 and 1/9 volunteers against NF135.C10 and NF166.C8 challenge infection, respectively. Post-immunization plasma showed a significantly lower capacity to block heterologous parasite development in primary human hepatocytes compared to NF54. Whole genome sequencing showed that NF135.C10 and NF166.C8 have amino acid changes in multiple antigens targeted by CPS-induced antibodies. Volunteers protected against heterologous challenge were among the stronger immune responders to in vitro parasite stimulation. CONCLUSIONS: Although highly protective against homologous parasites, NF54-CPS-induced immunity is less effective against heterologous parasite clones both in vivo and in vitro. Our data indicate that whole sporozoite-based vaccine approaches require more potent immune responses for heterologous protection. TRIAL REGISTRATION: This trial is registered in clinicaltrials.gov, under identifier NCT02098590 .


Assuntos
Imunização/métodos , Vacinas Antimaláricas/imunologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/imunologia , Esporozoítos/imunologia , Adolescente , Adulto , Animais , Método Duplo-Cego , Voluntários Saudáveis , Humanos , Adulto Jovem
16.
Sci Rep ; 7: 43486, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28344338

RESUMO

Keyhole limpet hemocyanin (KLH) is used as an immunogenic neo-antigen for various clinical applications and during vaccine development. For advanced monitoring of KLH-based interventions, we developed a flow cytometry-based assay for the ex vivo detection, phenotyping and isolation of KLH-specific B cells. As proof-of-principle, we analyzed 10 melanoma patients exposed to KLH during anti-cancer dendritic cell vaccination. Our assay demonstrated sensitive and specific detection of KLH-specific B cells in peripheral blood and KLH-specific B cell frequencies strongly correlated with anti-KLH serum antibody titers. Profiling of B cell subsets over the vaccination course revealed that KLH-specific B cells matured from naïve to class-switched memory B cells, confirming the prototypic B cell response to a neo-antigen. We conclude that flow-cytometric detection and in-depth phenotyping of KLH-specific B cells is specific, sensitive, and scalable. Our findings provide novel opportunities to monitor KLH-specific immune responses and serve as a blueprint for the development of new flow-cytometric protocols.


Assuntos
Adjuvantes Imunológicos/química , Subpopulações de Linfócitos B/imunologia , Vacinas Anticâncer/uso terapêutico , Células Dendríticas/transplante , Hemocianinas/química , Melanoma/terapia , Neoplasias Cutâneas/terapia , Anticorpos/sangue , Subpopulações de Linfócitos B/classificação , Subpopulações de Linfócitos B/patologia , Rastreamento de Células/métodos , Células Dendríticas/química , Células Dendríticas/citologia , Células Dendríticas/imunologia , ELISPOT , Citometria de Fluxo , Humanos , Memória Imunológica , Imunofenotipagem , Melanoma/imunologia , Melanoma/patologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Vacinação/métodos
17.
Parasitology ; 143(2): 224-35, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26864135

RESUMO

Controlled human malaria infections (CHMIs) are a powerful tool to assess the efficacy of drugs and/or vaccine candidates, but also to study anti-malarial immune responses at well-defined time points after infection. In this review, we discuss the insights that CHMI trials have provided into early immune activation and regulation during acute infection, and the capacity to induce and maintain immunological memory. Importantly, these studies show that a single infection is sufficient to induce long-lasting parasite-specific T- and B-cell memory responses, and suggest that blood-stage induced regulatory responses can limit inflammation both in ongoing and potentially future infections. As future perspective of investigation in CHMIs, we discuss the role of innate cell subsets, the interplay between innate and adaptive immune activation and the potential modulation of these responses after natural pre-exposure.


Assuntos
Memória Imunológica , Malária Falciparum/imunologia , Imunidade Adaptativa , Linfócitos B/imunologia , Humanos , Imunidade Inata , Plasmodium falciparum/imunologia , Linfócitos T/imunologia
18.
Am J Trop Med Hyg ; 94(3): 663-673, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26711509

RESUMO

Immunization of volunteers under chloroquine prophylaxis by bites of Plasmodium falciparum sporozoite (PfSPZ)-infected mosquitoes induces > 90% protection against controlled human malaria infection (CHMI). We studied intradermal immunization with cryopreserved, infectious PfSPZ in volunteers taking chloroquine (PfSPZ chemoprophylaxis vaccine [CVac]). Vaccine groups 1 and 3 received 3× monthly immunizations with 7.5 × 10(4) PfSPZ. Control groups 2 and 4 received normal saline. Groups 1 and 2 underwent CHMI (#1) by mosquito bite 60 days after the third immunization. Groups 3 and 4 were boosted 168 days after the third immunization and underwent CHMI (#2) 137 days later. Vaccinees (11/20, 55%) and controls (6/10, 60%) had the same percentage of mild to moderate solicited adverse events. After CHMI #1, 8/10 vaccinees (group 1) and 5/5 controls (group 2) became parasitemic by microscopy; the two negatives were positive by quantitative real-time polymerase chain reaction (qPCR). After CHMI #2, all vaccinees in group 3 and controls in group 4 were parasitemic by qPCR. Vaccinees showed weak antibody and no detectable cellular immune responses. Intradermal immunization with up to 3 × 10(5) PfSPZ-CVac was safe, but induced only minimal immune responses and no sterile protection against Pf CHMI.


Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Esporozoítos/imunologia , Adolescente , Adulto , Animais , Anopheles/parasitologia , Anopheles/fisiologia , Criopreservação , Método Duplo-Cego , Humanos , Imunização , Injeções Intradérmicas , Mordeduras e Picadas de Insetos , Malária Falciparum/parasitologia , Masculino , Segurança do Paciente , Adulto Jovem
19.
Vaccine ; 33(52): 7513-7, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26469724

RESUMO

A vaccine against malaria is urgently needed for control and eventual eradication. Different approaches are pursued to induce either sterile immunity directed against pre-erythrocytic parasites or to mimic naturally acquired immunity by controlling blood-stage parasite densities and disease severity. Pre-erythrocytic and blood-stage malaria vaccines are often seen as opposing tactics, but it is likely that they have to be combined into a multi-stage malaria vaccine to be optimally safe and effective. Since many antigenic targets are shared between liver- and blood-stage parasites, malaria vaccines have the potential to elicit cross-stage protection with immune mechanisms against both stages complementing and enhancing each other. Here we discuss evidence from pre-erythrocytic and blood-stage subunit and whole parasite vaccination approaches that show that protection against malaria is not necessarily stage-specific. Parasites arresting at late liver-stages especially, can induce powerful blood-stage immunity, and similarly exposure to blood-stage parasites can afford pre-erythrocytic immunity. The incorporation of a blood-stage component into a multi-stage malaria vaccine would hence not only combat breakthrough infections in the blood should the pre-erythrocytic component fail to induce sterile protection, but would also actively enhance the pre-erythrocytic potency of this vaccine. We therefore advocate that future studies should concentrate on the identification of cross-stage protective malaria antigens, which can empower multi-stage malaria vaccine development.


Assuntos
Antígenos de Protozoários/imunologia , Proteção Cruzada , Vacinas Antimaláricas/imunologia , Malária/imunologia , Plasmodium/crescimento & desenvolvimento , Plasmodium/imunologia , Eritrócitos/parasitologia , Estágios do Ciclo de Vida/imunologia , Fígado/parasitologia , Malária/parasitologia , Vacinação
20.
PLoS One ; 10(7): e0131216, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26132730

RESUMO

Removal of dead cells in the absence of concomitant immune stimulation is essential for tissue homeostasis. We recently identified an injury-induced protein misfolding event that orchestrates the plasmin-dependent proteolytic degradation of necrotic cells. As impaired clearance of dead cells by the innate immune system predisposes to autoimmunity, we determined whether plasmin could influence endocytosis and immune cell stimulation by dendritic cells - a critical cell that links the innate and adaptive immune systems. We find that plasmin generated on the surface of necrotic cells enhances their phagocytic removal by human monocyte-derived dendritic cells. Plasmin also promoted phagocytosis of protease-resistant microparticles by diverse mouse dendritic cell sub-types both in vitro and in vivo. Together with an increased phagocytic capacity, plasmin-treated dendritic cells maintain an immature phenotype, exhibit reduced migration to lymph nodes, increase their expression/release of the immunosuppressive cytokine TGF-ß, and lose their capacity to mount an allogeneic response. Collectively, our findings support a novel role for plasmin formed on dead cells and other phagocytic targets in maintaining tissue homeostasis by increasing the phagocytic function of dendritic cells while simultaneously decreasing their immunostimulatory capacity consistent with producing an immunosuppressive state.


Assuntos
Células Dendríticas/fisiologia , Fibrinolisina/fisiologia , Imunidade Inata/fisiologia , Fagocitose/fisiologia , Imunidade Adaptativa/fisiologia , Animais , Células Cultivadas , Citometria de Fluxo , Humanos , Ativação Linfocitária/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão , Fator de Crescimento Transformador beta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...