Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(9): 3494-3502, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33621087

RESUMO

Protein aggregation is a common feature in prominent neurodegenerative diseases, usually thought to be due to the assembly of a single peptide or protein. Recent studies have challenged this notion and suggested several proteins may be involved in promoting and amplifying disease. For example, the TDP-43 protein associated with Amyotrophic Lateral Sclerosis has been found in the brain along with Aß assemblies associated with Alzheimer's disease, and those patients that show the presence of TDP-43 are 10 times more likely to demonstrate cognitive impairment compared to TDP-43-negative Alzheimer's patients. Here we examine the interactions between the amyloidogenic core of TDP-43, TDP-43307-319, and a neurotoxic physiologically observed fragment of Aß, Aß25-35. Utilizing ion mobility mass spectrometry in concert with atomic force microscopy and molecular dynamics simulations, we investigate which oligomers are involved in seeding aggregation across these two different protein systems and gain insight into which structures initiate and result from these interactions. Studies were conducted by mixing Aß25-35 with the toxic wild type TDP-43307-319 peptide and with the nontoxic synthetic TDP-43307-319 mutant, G314V. Our findings identify a strong catalytic effect of TDP-43307-319 WT monomer in the acceleration of Aß25-35 aggregation to its toxic cylindrin and ß barrel forms. This observation is unprecedented in both its speed and specificity. Interestingly, the nontoxic G314V mutant of TDP-43307-319 and dimers or higher order oligomers of WT TDP-43307-319 do not promote aggregation of Aß25-35 but rather dissociate preformed toxic higher order oligomers of Aß25-35. Reasons for these very different behaviors are reported.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides/química , Esclerose Lateral Amiotrófica/etiologia , Sítios de Ligação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Ligação de Hidrogênio , Espectrometria de Massas/métodos , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Mutação , Fragmentos de Peptídeos/química , Ligação Proteica/genética , Multimerização Proteica/genética
2.
Anal Chem ; 92(17): 11802-11808, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32786488

RESUMO

Our knowledge of amyloid formation and cytotoxicity originating from self-assembly of α-helical peptides is incomplete. PSMα3 is the only system where high-resolution X-ray crystallography and toxicity data are available. Oligomers of multiple α-helical monomers are less stable than those of ß-strands, partially due to the lack of a consistent hydrogen-bonding network. It is challenging to preserve such oligomers in the gas phase where mass-selected structural studies using ion-mobility spectrometry mass spectrometry (IMS-MS) could be performed. As the oligomers fall apart after exiting the drift cell of the mass spectrometer, novel features that have shorter (a loss of charged species) or longer (a loss of neutral species) arrival times than expected are present together with those from the intact species. By obtaining a complete data set of PSMα3 peptides in solution and with n-dodecyl-ß-d-maltoside, a micelle-forming detergent, we are able to discern the dissociated from the intact oligomers and detergent-bound complexes and correlate the reported cytotoxicity to the peptide oligomeric structures and their interactions with membrane mimetics. The study sheds new insights into the interpretation of IMS-MS data from biomolecular self-assembly studies-an important and timely topic.


Assuntos
Espectrometria de Mobilidade Iônica/métodos , Conformação Proteica em alfa-Hélice/fisiologia , Staphylococcus aureus/metabolismo
3.
J Phys Chem B ; 124(40): 8772-8783, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32816481

RESUMO

Aberrant protein folding leading to the formation of characteristic cross-ß-sheet-rich amyloid structures is well known for its association with a variety of debilitating human diseases. Often, depending upon amino acid composition, only a small segment of a large protein participates in amyloid formation and is in fact capable of self-assembling into amyloid, independent of the rest of the protein. Therefore, such peptide fragments serve as useful model systems for understanding the process of amyloid formation. An important factor that has often been overlooked while using peptides to mimic full-length protein is the charge on the termini of these peptides. Here, we show the influence of terminal charges on the aggregation of an amyloidogenic peptide from microtubule-associated protein Tau, implicated in Alzheimer's disease and tauopathies. We found that modification of terminal charges by capping the peptide at one or both of the termini drastically modulates the fibrillation of the hexapeptide sequence paired helical filament 6 (PHF6) from repeat 3 of Tau, both with and without heparin. Without heparin, the PHF6 peptide capped at both termini and PHF6 capped only at the N-terminus self-assembled to form amyloid fibrils. With heparin, all capping variants of PHF6, except for PHF6 with both termini free, formed typical amyloid fibrils. However, the rate and extent of aggregation both with and without heparin as well as the morphology of aggregates were found to be highly dependent on the terminal charges. Our molecular dynamics simulations on PHF6 capping variants corroborated our experiments and provided critical insights into the mechanism of PHF6 self-assembly. Overall, our results emphasize the importance of terminal modifications in fibrillation of small peptide fragments and provide significant insights into the aggregation of a small Tau fragment, which is considered essential for Tau filament assembly.


Assuntos
Doença de Alzheimer , Proteínas tau , Amiloide , Humanos , Fragmentos de Peptídeos/genética , Peptídeos , Conformação Proteica em Folha beta , Proteínas tau/genética , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...