Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Sports Med ; 50(14): 3866-3874, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36305762

RESUMO

BACKGROUND: Previous studies have examined the transcriptomes and mechanical properties of whole tendons in different regions of the body. However, less is known about these characteristics within a single tendon. PURPOSE: To develop a regional transcriptomic atlas and evaluate the region-specific mechanical properties of Achilles tendons. STUDY DESIGN: Descriptive laboratory study. METHODS: Achilles tendons from 2-month-old male Sprague Dawley rats were used. Tendons were isolated and divided into proximal, middle, and distal thirds for RNA sequencing (n = 5). For mechanical testing, the Achilles muscle-tendon-calcaneus unit was mounted in a custom-designed materials testing system with the unit clamped over the musculotendinous junction (MTJ) and the calcaneus secured at 90° of dorsiflexion (n = 9). Tendons were stretched to 20 N at a constant speed of 0.0167 mm/s. Cross-sectional area, strain, stress, and Young modulus were determined in each tendon region. RESULTS: An open-access, interactive transcriptional atlas was generated that revealed distinct gene expression signatures in each tendon region. The proximal and distal regions had the largest differences in gene expression, with 2596 genes significantly differentially regulated at least 1.5-fold (q < .01). The proximal tendon displayed increased expression of genes resembling a tendon phenotype and increased expression of nerve cell markers. The distal region displayed increases in genes involved in extracellular matrix synthesis and remodeling, immune cell regulation, and a phenotype similar to cartilage and bone. There was a 3.72-fold increase in Young modulus from the proximal to middle region (P < .01) and an additional 1.34-fold increase from the middle to distal region (P = .027). CONCLUSION: Within a single tendon, there are region-specific transcriptomic signatures and mechanical properties, and there is likely a gradient in the biological and functional phenotype from the proximal origin at the MTJ to the distal insertion at the enthesis. CLINICAL RELEVANCE: These findings improve our understanding of the underlying biological heterogeneity of tendon tissue and will help inform the future targeted use of regenerative medicine and tissue engineering strategies for patients with tendon disorders.


Assuntos
Transcriptoma , Masculino , Ratos , Animais , Transcriptoma/genética , Ratos Sprague-Dawley
2.
J Bone Joint Surg Am ; 102(14): 1197-1204, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32675661

RESUMO

Coronavirus disease 2019 (COVID-19) is an emerging pandemic disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although the majority of patients who become infected with SARS-CoV-2 are asymptomatic or have mild symptoms, some patients develop severe symptoms that can permanently detract from their quality of life. SARS-CoV-2 is closely related to SARS-CoV-1, which causes severe acute respiratory syndrome (SARS). Both viruses infect the respiratory system, and there are direct and indirect effects of this infection on multiple organ systems, including the musculoskeletal system. Epidemiological data from the SARS pandemic of 2002 to 2004 identified myalgias, muscle dysfunction, osteoporosis, and osteonecrosis as common sequelae in patients with moderate and severe forms of this disease. Early studies have indicated that there is also considerable musculoskeletal dysfunction in some patients with COVID-19, although long-term follow-up studies have not yet been conducted. The purpose of this article was to summarize the known musculoskeletal pathologies in patients with SARS or COVID-19 and to combine this with computational modeling and biochemical signaling studies to predict musculoskeletal cellular targets and long-term consequences of the SARS-CoV-2 infection.


Assuntos
Infecções por Coronavirus/complicações , Sistema Musculoesquelético/fisiopatologia , Pneumonia Viral/complicações , Enzima de Conversão de Angiotensina 2 , Betacoronavirus , Osso e Ossos/fisiopatologia , COVID-19 , Simulação por Computador , Humanos , Articulações/fisiopatologia , Debilidade Muscular/virologia , Músculo Esquelético/fisiopatologia , Mialgia/virologia , Pandemias , Peptidil Dipeptidase A/genética , SARS-CoV-2 , Serina Endopeptidases/genética
3.
JCI Insight ; 5(13)2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32463804

RESUMO

Scleraxis is a basic helix-loop-helix transcription factor that plays a central role in promoting tenocyte proliferation and matrix synthesis during embryonic tendon development. However, the role of scleraxis in the growth and adaptation of adult tendons is not known. We hypothesized that scleraxis is required for tendon growth in response to mechanical loading and that scleraxis promotes the specification of progenitor cells into tenocytes. We conditionally deleted scleraxis in adult mice using a tamoxifen-inducible Cre-recombinase expressed from the Rosa26 locus (ScxΔ) and then induced tendon growth in Scx+ and ScxΔ adult mice via plantaris tendon mechanical overload. Compared with the WT Scx+ group, ScxΔ mice demonstrated blunted tendon growth. Transcriptional and proteomic analyses revealed significant reductions in cell proliferation, protein synthesis, and extracellular matrix genes and proteins. Our results indicate that scleraxis is required for mechanically stimulated adult tendon growth by causing the commitment of CD146+ pericytes into the tenogenic lineage and by promoting the initial expansion of newly committed tenocytes and the production of extracellular matrix proteins.


Assuntos
Diferenciação Celular/fisiologia , Músculo Esquelético/metabolismo , Células-Tronco/metabolismo , Tendões/metabolismo , Animais , Proliferação de Células/fisiologia , Matriz Extracelular/metabolismo , Camundongos Transgênicos , Proteômica/métodos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...