Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Immunobiology ; 222(11): 1004-1013, nov. 2017.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IPPROD, Sec. Est. Saúde SP | ID: biblio-1016890

RESUMO

Leptospirosis is globally widespread neglected disease, affecting most mammalian species. Clinical signs can be confused with other diseases which make the diagnosis and treatment difficult. Chemokines and cytokines are known for their role in the inflammatory and immune response to infections. The profile determination of chemokines' expressions in the course of infection may elucidate the defense mechanisms of the host and support the search for effective treatment strategies. We investigated the mechanisms of innate immunity through the comparison of chemokines induced during infection with L. interrogans in mice with different levels of susceptibility. We used lung and spleen tissues samples of mice from C3H/HeJ, C3H/HePas and Balb/c, respectively sensitive, intermediate susceptibility and resistant to the pathogen. The inoculation of L. interrogans in C3H/HeJ mice led a comparatively smaller change in chemokines expression in both spleen and lung tissues. In samples from spleens and lungs of C3H/HePas and Balb/c the higher increases occurred on CXCL9, CXCL16, CXCL5, CCL8 and CCL5 in Balb/c. Given the same genetic background, the differences in the responses of C3H/HePas compared to C3H/HeJ mice strongly suggest the role of chemokines for the survival of parental strain. Therefore, the greatest increase in CXC chemokines appears to be efficient to induce migration of cells to the secondary lymphoid organs and affected tissues, which is important to control infection. Overall, CXC chemokines are important for the activation and attraction of T cell and may influence the course and control of the infection in resistant Balb/c mice.(AU) i


Assuntos
Animais , Quimiocinas/imunologia , Leptospirose , Interações Hospedeiro-Patógeno , Camundongos Endogâmicos C3H
2.
Immunobiology ; 222(11): 1004-1013, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28641918

RESUMO

Leptospirosis is globally widespread neglected disease, affecting most mammalian species. Clinical signs can be confused with other diseases which make the diagnosis and treatment difficult. Chemokines and cytokines are known for their role in the inflammatory and immune response to infections. The profile determination of chemokines' expressions in the course of infection may elucidate the defense mechanisms of the host and support the search for effective treatment strategies. We investigated the mechanisms of innate immunity through the comparison of chemokines induced during infection with L. interrogans in mice with different levels of susceptibility. We used lung and spleen tissues samples of mice from C3H/HeJ, C3H/HePas and Balb/c, respectively sensitive, intermediate susceptibility and resistant to the pathogen. The inoculation of L. interrogans in C3H/HeJ mice led a comparatively smaller change in chemokines expression in both spleen and lung tissues. In samples from spleens and lungs of C3H/HePas and Balb/c the higher increases occurred on CXCL9, CXCL16, CXCL5, CCL8 and CCL5 in Balb/c. Given the same genetic background, the differences in the responses of C3H/HePas compared to C3H/HeJ mice strongly suggest the role of chemokines for the survival of parental strain. Therefore, the greatest increase in CXC chemokines appears to be efficient to induce migration of cells to the secondary lymphoid organs and affected tissues, which is important to control infection. Overall, CXC chemokines are important for the activation and attraction of T cell and may influence the course and control of the infection in resistant Balb/c mice.


Assuntos
Quimiocinas/metabolismo , Leptospira/imunologia , Leptospirose/patologia , Pulmão/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Cultivadas , Progressão da Doença , Regulação Bacteriana da Expressão Gênica , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Interações Hospedeiro-Patógeno , Imunidade Inata , Mediadores da Inflamação/metabolismo , Leptospirose/imunologia , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Receptor 4 Toll-Like/metabolismo
3.
Nucleic Acids Res ; 44(3): p. 1179-1191, 2016.
Artigo | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib13881

RESUMO

We determined the effects of DNA damage caused by ultraviolet radiation on gene expression in Leptospira interrogans using DNA microarrays. These data were integrated with DNA binding in vivo of LexA1, a regulator of the DNA damage response, assessed by chromatin immunoprecipitation and massively parallel DNA sequencing (ChIP-seq). In response to DNA damage, Leptospira induced expression of genes involved in DNA metabolism, in mobile genetic elements and defective prophages. The DNA repair genes involved in removal of photodamage (e.g. nucleotide excision repair uvrABC, recombinases recBCD and resolvases ruvABC) were not induced. Genes involved in various metabolic pathways were down regulated, including genes involved in cell growth, RNA metabolism and the tricarboxylic acid cycle. From ChIP-seq data, we observed 24 LexA1 binding sites located throughout chromosome 1 and one binding site in chromosome 2. Expression of many, but not all, genes near those sites was increased following DNA damage. Binding sites were found as far as 550 bp upstream from the start codon, or 1 kb into the coding sequence. Our findings indicate that there is a shift in gene expression following DNA damage that represses genes involved in cell growth and virulence, and induces genes involved in mutagenesis and recombination


Assuntos
Genética , Bacteriologia
4.
Mol. Genet. Genomics ; 291(2): p. 703-722, 2016.
Artigo | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib13797

RESUMO

Leptospirosis is an emerging zoonosis with important economic and public health consequences and is caused by pathogenic leptospires. The genus Leptospira belongs to the order Spirochaetales and comprises saprophytic (L. biflexa), pathogenic (L. interrogans) and host-dependent (L. borgpetersenii) members. Here, we present an in silico search for DNA repair pathways in Leptospira spp. The relevance of such DNA repair pathways was assessed through the identification of mRNA levels of some genes during infection in animal model and after exposition to spleen cells. The search was performed by comparison of available Leptospira spp. genomes in public databases with known DNA repair-related genes. Leptospires exhibit some distinct and unexpected characteristics, for instance the existence of a redundant mechanism for repairing a chemically diverse spectrum of alkylated nucleobases, a new mutS-like gene and a new shorter version of uvrD. Leptospira spp. shares some characteristics from Gram-positive, as the presence of PcrA, two RecQ paralogs and two SSB proteins; the latter is considered a feature shared by naturally competent bacteria. We did not find a significant reduction in the number of DNA repair-related genes in both pathogenic and host-dependent species. Pathogenic leptospires were enriched for genes dedicated to base excision repair and non-homologous end joining. Their evolutionary history reveals a remarkable importance of lateral gene transfer events for the evolution of the genus. Up-regulation of specific DNA repair genes, including components of SOS regulon, during infection in animal model validates the critical role of DNA repair mechanisms for the complex interplay between host/pathogen


Assuntos
Bacteriologia , Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...