Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Inherit Metab Dis ; 43(6): 1370-1381, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32852845

RESUMO

Congenital disorders of glycosylation (CDG) are a growing group of inborn metabolic disorders with multiorgan presentation. SLC39A8-CDG is a severe subtype caused by biallelic mutations in the manganese transporter SLC39A8, reducing levels of this essential cofactor for many enzymes including glycosyltransferases. The current diagnostic standard for disorders of N-glycosylation is the analysis of serum transferrin. Exome and Sanger sequencing were performed in two patients with severe neurodevelopmental phenotypes suggestive of CDG. Transferrin glycosylation was analyzed by high-performance liquid chromatography (HPLC) and isoelectric focusing in addition to comprehensive N-glycome analysis using matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry (MS). Atomic absorption spectroscopy was used to quantify whole blood manganese levels. Both patients presented with a severe, multisystem disorder, and a complex neurological phenotype. Magnetic resonance imaging (MRI) revealed a Leigh-like syndrome with bilateral T2 hyperintensities of the basal ganglia. In patient 1, exome sequencing identified the previously undescribed homozygous variant c.608T>C [p.F203S] in SLC39A8. Patient 2 was found to be homozygous for c.112G>C [p.G38R]. Both individuals showed a reduction of whole blood manganese, though transferrin glycosylation was normal. N-glycome using MALDI-TOF MS identified an increase of the asialo-agalactosylated precursor N-glycan A2G1S1 and a decrease in bisected structures. In addition, analysis of heterozygous CDG-allele carriers identified similar but less severe glycosylation changes. Despite its reliance as a clinical gold standard, analysis of transferrin glycosylation cannot be categorically used to rule out SLC39A8-CDG. These results emphasize that SLC39A8-CDG presents as a spectrum of dysregulated glycosylation, and MS is an important tool for identifying deficiencies not detected by conventional methods.


Assuntos
Gânglios da Base/fisiopatologia , Proteínas de Transporte de Cátions/genética , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/fisiopatologia , Adolescente , Proteínas de Transporte de Cátions/deficiência , Criança , Pré-Escolar , Cromatografia Líquida de Alta Pressão , Feminino , Glicosilação , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Manganês/metabolismo , Espectrometria de Massas , Fenótipo , Transferrina/análise , Sequenciamento do Exoma , Adulto Jovem
2.
J Inherit Metab Dis ; 43(5): 1024-1036, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32160317

RESUMO

Hydrogen sulfide, a signaling molecule formed mainly from cysteine, is catabolized by sulfide:quinone oxidoreductase (gene SQOR). Toxic hydrogen sulfide exposure inhibits complex IV. We describe children of two families with pathogenic variants in SQOR. Exome sequencing identified variants; SQOR enzyme activity was measured spectrophotometrically, protein levels evaluated by western blotting, and mitochondrial function was assayed. In family A, following a brief illness, a 4-year-old girl presented comatose with lactic acidosis and multiorgan failure. After stabilization, she remained comatose, hypotonic, had neurostorming episodes, elevated lactate, and Leigh-like lesions on brain imaging. She died shortly after. Her 8-year-old sister presented with a rapidly fatal episode of coma with lactic acidosis, and lesions in the basal ganglia and left cortex. Muscle and liver tissue had isolated decreased complex IV activity, but normal complex IV protein levels and complex formation. Both patients were homozygous for c.637G > A, which we identified as a founder mutation in the Lehrerleut Hutterite with a carrier frequency of 1 in 13. The resulting p.Glu213Lys change disrupts hydrogen bonding with neighboring residues, resulting in severely reduced SQOR protein and enzyme activity, whereas sulfide generating enzyme levels were unchanged. In family B, a boy had episodes of encephalopathy and basal ganglia lesions. He was homozygous for c.446delT and had severely reduced fibroblast SQOR enzyme activity and protein levels. SQOR dysfunction can result in hydrogen sulfide accumulation, which, consistent with its known toxicity, inhibits complex IV resulting in energy failure. In conclusion, SQOR deficiency represents a new, potentially treatable, cause of Leigh disease.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Doença de Leigh/enzimologia , Mitocôndrias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Quinona Redutases/fisiologia , Acidose Láctica/patologia , Encefalopatias/patologia , Pré-Escolar , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Família , Feminino , Homozigoto , Humanos , Sulfeto de Hidrogênio/química , Cinética , Doença de Leigh/metabolismo , Imageamento por Ressonância Magnética , Masculino , Oxirredução , Quinona Redutases/química
3.
J Assist Reprod Genet ; 35(6): 985-992, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29936652

RESUMO

OBJECTIVES: In vitro fertilization (IVF) has been linked to an increased risk for imprinting disorders in offspring. The data so far have predominantly been retrospective, comparing the rate of IVF conceptions in affected patients with controls. We describe a series of fetuses with omphalocele that were tested for Beckwith-Wiedemann syndrome (BWS) and subsequently ascertained as to whether pregnancies were conceived by assisted reproductive technologies (ART). METHODS: Fetuses were tested for BWS by Southern blot, PCR based methods, and methylation analysis to identify the imprinting status at primarily the IC2 locus, KCNQ1OT1, as well as IC1, H19/IGF-2. Some fetuses were also tested for uniparental disomy of chromosome 11p. RESULTS: We tested 301 fetuses with omphalocele for BWS. Forty samples were positive. Sixteen were from IVF pregnancies, for an overall rate of 40%. Such as high proportion of IVF pregnancies in a series of BWS-positive fetuses has not been described previously. Possible factors such as twinning and ascertainment bias are discussed. CONCLUSION: We found about a 20-fold overrepresentation of IVF cases in fetuses with BWS/omphalocele when compared with the rate of ART pregnancies in the USA (p < .0001). Our series provides support for an association of IVF and BWS. Patients should be counseled about these risks and made aware of the availability of prenatal diagnosis for detection.


Assuntos
Síndrome de Beckwith-Wiedemann/genética , Impressão Genômica/genética , Diagnóstico Pré-Natal , Técnicas de Reprodução Assistida/efeitos adversos , Síndrome de Beckwith-Wiedemann/epidemiologia , Síndrome de Beckwith-Wiedemann/fisiopatologia , Metilação de DNA/genética , Feminino , Fertilização in vitro , Feto/fisiopatologia , Humanos , Masculino , Gravidez
4.
Pediatr Dev Pathol ; 11(5): 377-83, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18260692

RESUMO

Androgenetic/biparental mosaicism, in which a subset of cells has complete paternal uniparental disomy, is associated with placental mesenchymal dysplasia (PMD), which is compatible with fetal development, indicating that fetal organs could also have androgenetic/biparental mosaicism, but few cases of somatic mosaicism have been described. A hepatic mesenchymal hamartoma (HMH) was resected from an otherwise healthy, nondysmorphic, 11-month-old girl, whose prenatal development was complicated by PMD. Placenta, HMH, histologically normal liver, and other tissues were examined for androgenetic/biparental mosaicism by analysis of (1) polymorphic DNA microsatellite markers, (2) the methylation status of an imprinted gene, SNRPN, and (3) immunohistochemically detectable protein products of the imprinted genes p57KIP2 and PHLDA2. The patient's liver, HMH, and 1 placental sample demonstrated an increased ratio of paternal to maternal alleles, indicating androgenetic/biparental mosaicism. The androgenetic component comprised 26% to 60% of the cells. Other tissues, including a 2nd placental sample, white blood cells, umbilical cord, and abdominal fascia, had no detectable androgenetic component. Methylation analysis confirmed a relative excess of the paternally imprinted SNRPN homolog in the normal liver, HMH, and placenta. Placental p57KIP2 immunoreactivity was consistent with androgenetic/biparental mosaicism, but neither p57KIP2 nor PHLDA2 immunohistochemistry were informative for HMH, because neither antigen was detected in control liver samples. We report androgenetic/biparental mosaicism in nonplacental tissues of an infant with PMD and provide the 1st description of genome-wide paternal uniparental disomy in HMH. Androgenetic/biparental mosaicism appears to play a role in the pathogenesis of HMH and other somatic lesions, particularly those associated with PMD.


Assuntos
Hamartoma/patologia , Hepatopatias/patologia , Mosaicismo , Doenças Placentárias/patologia , Dissomia Uniparental/patologia , Cesárea , Feminino , Seguimentos , Hamartoma/diagnóstico por imagem , Hamartoma/genética , Humanos , Imuno-Histoquímica , Recém-Nascido , Hepatopatias/diagnóstico por imagem , Hepatopatias/genética , Hepatopatias/cirurgia , Doenças Placentárias/diagnóstico por imagem , Doenças Placentárias/genética , Gravidez , Terceiro Trimestre da Gravidez , Fatores de Tempo , Resultado do Tratamento , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA