Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 388(3): 798-812, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38253384

RESUMO

The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome is a central regulator of innate immunity, essential for processing and release of interleukin-1ß and pyroptotic cell death. As endogenous NLRP3 activating triggers are hallmarks of many human chronic inflammatory diseases, inhibition of NLRP3 has emerged as a therapeutic target. Here we identify NDT-19795 as a novel carboxylic acid-containing NLRP3 activation inhibitor in both human and mouse monocytes and macrophages. Remarkably, conversion of the carboxylate to an isopropyl-ester (NT-0796) greatly enhances NLRP3 inhibitory potency in human monocytes. This increase is attributed to the ester-containing pharmacophore being more cell-penetrant than the acid species and, once internalized, the ester being metabolized to NDT-19795 by carboxylesterase-1 (CES-1). Mouse macrophages do not express CES-1, and NT-0796 is ineffective in these cells. Mice also contain plasma esterase (Ces1c) activity which is absent in humans. To create a more human-like model, we generated a mouse line in which the genome was modified, removing Ces1c and replacing this segment of DNA with the human CES-1 gene driven by a mononuclear phagocyte-specific promoter. We show human CES-1 presence in monocytes/macrophages increases the ability of NT-0796 to inhibit NLRP3 activation both in vitro and in vivo. As NLRP3 is widely expressed by monocytes/macrophages, the co-existence of CES-1 in these same cells affords a unique opportunity to direct ester-containing NLRP3 inhibitors precisely to target cells of interest. Profiling NT-0796 in mice humanized with respect to CES-1 biology enables critical modeling of the pharmacokinetics and pharmacodynamics of this novel therapeutic candidate. SIGNIFICANCE STATEMENT: Inhibition of NLRP3 represents a desirable therapeutic strategy for the treatment of multiple human disorders. In this study pharmacological properties of a structurally-novel, ester-containing NLRP3 inhibitor NT-0796 are characterized. To study pharmacodynamics of NT-0796 in vivo, a mouse line was engineered possessing more human-like traits with respect to carboxylesterase biology. In the context of these hCES-1 mice, NT-0796 serves as a more effective inhibitor of NLRP3 activation than the corresponding acid, highlighting the full translational potential of the ester strategy.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas NLR , Humanos , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Domínio Pirina , Inflamassomos/metabolismo , Caspase 1/metabolismo , Ésteres , Hidrolases de Éster Carboxílico/metabolismo , Interleucina-1beta/metabolismo
2.
J Med Chem ; 66(21): 14897-14911, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37874905

RESUMO

The NLRP3 inflammasome is a component of the innate immune system involved in the production of proinflammatory cytokines. Neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis, have been shown to have a component driven by NLRP3 inflammasome activation. Diseases such as these with large unmet medical needs have resulted in an interest in inhibiting the NLRP3 inflammasome as a potential pharmacological treatment, but to date, no marketed drugs specifically targeting NLRP3 have been approved. Furthermore, the requirement for CNS-penetrant molecules adds additional complexity to the search for NLRP3 inflammasome inhibitors suitable for clinical investigation of neuroinflammatory disorders. We designed a series of ester-substituted carbamate compounds as selective NLRP3 inflammasome inhibitors, leading to NT-0796, an isopropyl ester that undergoes intracellular conversion to NDT-19795, the carboxylic acid active species. NT-0796 was shown to be a potent and selective NLRP3 inflammasome inhibitor with demonstrated in vivo brain penetration.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Doenças Neuroinflamatórias , Encéfalo/metabolismo , Ésteres
3.
Biochem J ; 369(Pt 2): 331-9, 2003 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-12350227

RESUMO

We have analysed activation of nuclear factor-kappaB (NF-kappaB) in response to interleukin-1 (IL-1) in human fibroblasts by tracking intracellular distribution and levels of endogenous relA, NF-kappaB1 and inhibitor of kappaB (I-kappaB) alpha using semi-quantitative confocal microscopy. Nuclear translocation of endogenous relA correlated with I-kappaBalpha degradation during stimulation with IL-1, whereas no effects were seen on levels or localization of NF-kappaB1. During pathway activation, relA was transported up a concentration gradient, resulting in a 3-4-fold increase in nuclear levels, but without any significant decrease in cytoplasmic concentration. IL-1 stimulation caused translocation of only 20% of the relA, but resulted in degradation of up to 70% of the cytoplasmic I-kappaBalpha. RelA nuclear translocation in fibroblasts correlated with DNA-binding activity measured by electrophoretic mobility shift assay (EMSA), both with respect to kinetics and IL-1 concentration-dependence. Clonal populations of cells demonstrated a marked degree of heterogeneity in the response to IL-1. The single-cell assay revealed the presence of responder and non-responder subpopulations, with an enhanced proportion of responder cells, and prolonged responses at higher concentrations of IL-1. Comparing different cell types demonstrated that whereas HepG2 cells, as fibroblasts, showed good correlation between nuclear translocation of relA and activation of DNA binding by relA-containing dimers, EL4 thymoma cells showed no effect on relA localization, even during induction of significant levels NF-kappaB activity, as measured by EMSA. The analysis shows that stimulation by IL-1 results in transient perturbation of the NF-kappaB system, which cycles between the resting and active states with net redistribution of a minor proportion of its DNA-binding component. In addition, it demonstrates significant cell-to-cell variations, as well as cell-type-specific differences in net relA nuclear transport in response to stimuli. The data are consistent with NF-kappaB constituting a dynamic and versatile system, regulated to a significant degree by binary events involving bidirectional trafficking between the cytoplasmic and nuclear compartments during pathway activation.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Interleucina-1/metabolismo , NF-kappa B/metabolismo , Fracionamento Celular , Linhagem Celular , Núcleo Celular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , Imuno-Histoquímica , Microscopia Confocal , NF-kappa B/genética , Receptores de Interleucina-1/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo , Fator de Transcrição RelA
4.
J Immunol ; 168(2): 671-9, 2002 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-11777960

RESUMO

The UL16-binding proteins (ULBPs) are a novel family of MHC class I-related molecules that were identified as targets of the human CMV glycoprotein, UL16. We have previously shown that ULBP expression renders a relatively resistant target cell sensitive to NK cytotoxicity, presumably by engaging NKG2D, an activating receptor expressed by NK and other immune effector cells. In this study we show that NKG2D is the ULBP counterstructure on primary NK cells and that its expression is up-regulated by IL-15 stimulation. Soluble forms of ULBPs induce marked protein tyrosine phosphorylation, and activation of the Janus kinase 2, STAT5, extracellular signal-regulated kinase, mitogen-activated protein kinase, and phosphatidylinositol 3-kinase (PI 3-kinase)/Akt signal transduction pathways. ULBP-induced activation of Akt and extracellular signal-regulated kinase and ULBP-induced IFN-gamma production are blocked by inhibitors of PI 3-kinase, consistent with the known binding of PI 3-kinase to DAP10, the membrane-bound signal-transducing subunit of the NKG2D receptor. While all three ULBPs activate the same signaling pathways, ULBP3 was found to bind weakly and to induce the weakest signal. In summary, we have shown that NKG2D is the ULBP counterstructure on primary NK cells and for the first time have identified signaling pathways that are activated by NKG2D ligands. These results increase our understanding of the mechanisms by which NKG2D activates immune effector cells and may have implications for immune surveillance against pathogens and tumors.


Assuntos
Proteínas de Transporte/metabolismo , Citomegalovirus/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais/metabolismo , Proteínas do Leite , Proteínas Serina-Treonina Quinases , Receptores Imunológicos/metabolismo , Transdução de Sinais/imunologia , Anticorpos Monoclonais/farmacologia , Apoptose/imunologia , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/fisiologia , Quimiocinas/biossíntese , Citocinas/biossíntese , Citomegalovirus/imunologia , Citotoxicidade Imunológica , Proteínas de Ligação a DNA/metabolismo , Proteínas Ligadas por GPI , Antígenos de Histocompatibilidade Classe I/fisiologia , Humanos , Fragmentos Fc das Imunoglobulinas/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular , Janus Quinase 2 , Células Matadoras Naturais/enzimologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Sistema de Sinalização das MAP Quinases/imunologia , Proteínas de Membrana , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Receptores Imunológicos/imunologia , Receptores de Células Matadoras Naturais , Fator de Transcrição STAT5 , Transativadores/metabolismo , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...