Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anat ; 233(6): 843-853, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30294787

RESUMO

The inertial properties of body segments reflect performance and locomotor habits in primates. While Pan paniscus is generally described as more gracile, lighter in body mass, and as having relatively longer and heavier hindlimbs than Pan troglodytes, both species exhibit very similar patterns of (quadrupedal and bipedal) kinematics, but show slightly different locomotor repertoires. We used a geometric model to estimate the inertial properties for all body segments (i.e. head, trunk, upper and lower arms, hand, thigh, shank and foot) using external length and diameter measurements of 12 anaesthetized bonobos (eight adults and four immatures). We also calculated whole limb inertial properties. When we compared absolute and relative segment morphometric and inertial variables between bonobos and chimpanzees, we found that adult bonobos are significantly lighter than adult chimpanzees. The bonobo is also shorter in head length, upper and lower arm lengths, and foot length, and is generally lighter in most absolute segment mass values (except head and hand). In contrast, the bonobo has a longer trunk. When scaled relative to body mass, most differences disappear between the two species. Only the longer trunk and the shorter head of the bonobo remain apparent, as well as the lighter thigh compared with the chimpanzee. We found similar values of natural pendular periods of the limbs in both species, despite differences in absolute limb lengths, masses, mass centres (for the hindlimb) and moments of inertia. While our data contradict the commonly accepted view that bonobos have relatively longer and heavier hindlimbs than chimpanzees, they are consistent with the observed similarities in the quadrupedal and bipedal kinematics between these species. The morphological differences between both species are more subtle than those previously described from postcranial osteological materials.


Assuntos
Pan paniscus/anatomia & histologia , Pan troglodytes/anatomia & histologia , Animais , Fenômenos Biomecânicos , Feminino , Locomoção/fisiologia , Masculino , Pan paniscus/fisiologia , Pan troglodytes/fisiologia
2.
Am J Primatol ; 78(11): 1165-1177, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27309794

RESUMO

Although much is known about the terrestrial locomotion of great apes, their arboreal locomotion has been studied less extensively. This study investigates arboreal locomotion in bonobos (Pan paniscus), focusing on the gait characteristics and spatio-temporal variables associated with locomotion on a pole. These features are compared across different substrate inclinations (0°, 30°, 45°, 60°, and 90°), and horizontal quadrupedal walking is compared between an arboreal and a terrestrial substrate. Our results show greater variation in footfall patterns with increasing incline, resulting in more lateral gait sequences. During climbing on arboreal inclines, smaller steps and strides but higher stride frequencies and duty factors are found compared to horizontal arboreal walking. This may facilitate better balance control and dynamic stability on the arboreal substrate. We found no gradual change in spatio-temporal variables with increasing incline; instead, the results for all inclines were clustered together. Bonobos take larger strides at lower stride frequencies and lower duty factors on a horizontal arboreal substrate than on a flat terrestrial substrate. We suggest that these changes are the result of the better grip of the grasping feet on an arboreal substrate. Speed modulation of the spatio-temporal variables is similar across substrate inclinations and between substrate types, suggesting a comparable underlying motor control. Finally, we contrast these variables of arboreal inclined climbing with those of terrestrial bipedal locomotion, and briefly discuss the results with respect to the origin of habitual bipedalism. Am. J. Primatol. 78:1165-1177, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Marcha , Locomoção , Pan paniscus , Animais , Fenômenos Biomecânicos ,
3.
J Anat ; 210(5): 518-31, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17451529

RESUMO

Inertial characteristics and dimensions of the body and body segments form an integral part of a biomechanical analysis of motion. In primate studies, however, segment inertial parameters of non-human hominoids are scarce and often obtained using varying techniques. Therefore, the principal aim of this study was to expand the existing chimpanzee inertial property data set using a non-invasive measuring technique. We also considered age- and sex-related differences within our sample. By means of a geometric model based on Crompton et al. (1996; Am J Phys Anthropol 99, 547-570) we generated inertial properties using external segment length and diameter measurements of 53 anaesthetized chimpanzees (Pan troglodytes). We report absolute inertial parameters for immature and mature subjects and for males and females separately. Proportional data were computed to allow the comparison between age classes and sex classes. In addition, we calculated whole limb inertial properties and we discuss their potential biomechanical consequences. We found no significant differences between the age classes in the proportional data except for hand and foot measures where juveniles exhibit relatively longer and heavier distal segments than adults. Furthermore, most sex-related differences can be directly attributed to the higher absolute segment masses in male chimpanzees resulting in higher moments of inertia. Additionally, males tend to have longer upper limbs than females. However, regarding proportional data we discuss the general inertial properties of the chimpanzee. The described segment inertial parameters of males and females, and of the two age classes, represent a valuable data set ready for use in a range of biomechanical locomotor models. These models offer great potential for improving our understanding of early hominin locomotor patterns.


Assuntos
Constituição Corporal , Locomoção , Pan troglodytes/fisiologia , Envelhecimento , Animais , Braço/anatomia & histologia , Braço/fisiologia , Fenômenos Biomecânicos , Feminino , Marcha , Perna (Membro)/anatomia & histologia , Perna (Membro)/fisiologia , Masculino , Modelos Biológicos , Modelos Estatísticos , Pan troglodytes/anatomia & histologia , Fatores Sexuais
4.
Folia Primatol (Basel) ; 77(3): 246-54, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16612099

RESUMO

Registering substrate reaction forces from primates during climbing requires the design and construction of customized recording devices. The technical difficulties in constructing a reliable apparatus hinder research on the kinetics of primate locomotion. This is unfortunate since arboreal locomotion, especially vertical climbing, is an important component of the hominoid locomotor repertoire. In this technical paper, we describe a custom-built climbing pole that allows recordings of dynamic 3-dimensional forces during locomotion on horizontal and sloping substrates and during vertical climbing. The pole contains an instrumented section that can readily be modified and enables us to register forces of a single limb or multiple limbs in a broad range of primates. For verification, we constructed a similar set-up (which would not be usable for primates) using a conventional force plate. Data for a human subject walking on both set-ups were compared. The experimental set-up records accurate and reliable substrate reaction forces in three orthogonal directions. Because of its adjustability, this type of modular set-up can be used for a great variety of primate studies. When combining such kinetic measurements together with kinematic information, data of great biomechanical value can be generated. These data will hopefully allow biological anthropologists to answer current questions about primate behaviours on vertical substrates.


Assuntos
Fenômenos Biomecânicos/instrumentação , Fenômenos Biomecânicos/métodos , Atividade Motora/fisiologia , Pan paniscus/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...