Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Orphanet J Rare Dis ; 19(1): 15, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221620

RESUMO

BACKGROUND: Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder resulting from pathogenic variants in three distinct genes, with most of the variants occurring in the electron transfer flavoprotein-ubiquinone oxidoreductase gene (ETFDH). Recent evidence of potential founder variants for MADD in the South African (SA) population, initiated this extensive investigation. As part of the International Centre for Genomic Medicine in Neuromuscular Diseases study, we recruited a cohort of patients diagnosed with MADD from academic medical centres across SA over a three-year period. The aim was to extensively profile the clinical, biochemical, and genomic characteristics of MADD in this understudied population. METHODS: Clinical evaluations and whole exome sequencing were conducted on each patient. Metabolic profiling was performed before and after treatment, where possible. The recessive inheritance and phase of the variants were established via segregation analyses using Sanger sequencing. Lastly, the haplotype and allele frequencies were determined for the two main variants in the four largest SA populations. RESULTS: Twelve unrelated families (ten of White SA and two of mixed ethnicity) with clinically heterogeneous presentations in 14 affected individuals were observed, and five pathogenic ETFDH variants were identified. Based on disease severity and treatment response, three distinct groups emerged. The most severe and fatal presentations were associated with the homozygous c.[1067G > A];c.[1067G > A] and compound heterozygous c.[976G > C];c.[1067G > A] genotypes, causing MADD types I and I/II, respectively. These, along with three less severe compound heterozygous genotypes (c.[1067G > A];c.[1448C > T], c.[740G > T];c.[1448C > T], and c.[287dupA*];c.[1448C > T]), resulting in MADD types II/III, presented before the age of five years, depending on the time and maintenance of intervention. By contrast, the homozygous c.[1448C > T];c.[1448C > T] genotype, which causes MADD type III, presented later in life. Except for the type I, I/II and II cases, urinary metabolic markers for MADD improved/normalised following treatment with riboflavin and L-carnitine. Furthermore, genetic analyses of the most frequent variants (c.[1067G > A] and c.[1448C > T]) revealed a shared haplotype in the region of ETFDH, with SA population-specific allele frequencies of < 0.00067-0.00084%. CONCLUSIONS: This study reveals the first extensive genotype-phenotype profile of a MADD patient cohort from the diverse and understudied SA population. The pathogenic variants and associated variable phenotypes were characterised, which will enable early screening, genetic counselling, and patient-specific treatment of MADD in this population.


Assuntos
Deficiência Múltipla de Acil Coenzima A Desidrogenase , Humanos , Pré-Escolar , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/tratamento farmacológico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Mutação/genética , África do Sul , Genótipo , Riboflavina/uso terapêutico , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/uso terapêutico , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo
2.
Brain ; 146(12): 5098-5109, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516995

RESUMO

Neuromuscular diseases (NMDs) affect ∼15 million people globally. In high income settings DNA-based diagnosis has transformed care pathways and led to gene-specific therapies. However, most affected families are in low-to-middle income countries (LMICs) with limited access to DNA-based diagnosis. Most (86%) published genetic data is derived from European ancestry. This marked genetic data inequality hampers understanding of genetic diversity and hinders accurate genetic diagnosis in all income settings. We developed a cloud-based transcontinental partnership to build diverse, deeply-phenotyped and genetically characterized cohorts to improve genetic architecture knowledge, and potentially advance diagnosis and clinical management. We connected 18 centres in Brazil, India, South Africa, Turkey, Zambia, Netherlands and the UK. We co-developed a cloud-based data solution and trained 17 international neurology fellows in clinical genomic data interpretation. Single gene and whole exome data were analysed via a bespoke bioinformatics pipeline and reviewed alongside clinical and phenotypic data in global webinars to inform genetic outcome decisions. We recruited 6001 participants in the first 43 months. Initial genetic analyses 'solved' or 'possibly solved' ∼56% probands overall. In-depth genetic data review of the four commonest clinical categories (limb girdle muscular dystrophy, inherited peripheral neuropathies, congenital myopathy/muscular dystrophies and Duchenne/Becker muscular dystrophy) delivered a ∼59% 'solved' and ∼13% 'possibly solved' outcome. Almost 29% of disease causing variants were novel, increasing diverse pathogenic variant knowledge. Unsolved participants represent a new discovery cohort. The dataset provides a large resource from under-represented populations for genetic and translational research. In conclusion, we established a remote transcontinental partnership to assess genetic architecture of NMDs across diverse populations. It supported DNA-based diagnosis, potentially enabling genetic counselling, care pathways and eligibility for gene-specific trials. Similar virtual partnerships could be adopted by other areas of global genomic neurological practice to reduce genetic data inequality and benefit patients globally.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Doenças Neuromusculares , Doenças do Sistema Nervoso Periférico , Humanos , Doenças Neuromusculares/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , DNA
3.
Front Pediatr ; 10: 1033299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467485

RESUMO

Paediatric neuromuscular diseases are under-recognised and under-diagnosed in Africa, especially those of genetic origin. This may be attributable to various factors, inclusive of socioeconomic barriers, high burden of communicable and non-communicable diseases, resource constraints, lack of expertise in specialised fields and paucity of genetic testing facilities and biobanks in the African population, making access to and interpretation of results more challenging. As new treatments become available that are effective for specific sub-phenotypes, it is even more important to confirm a genetic diagnosis for affected children to be eligible for drug trials and potential treatments. This perspective article aims to create awareness of the major neuromuscular diseases clinically diagnosed in the South African paediatric populations, as well as the current challenges and possible solutions. With this in mind, we introduce a multi-centred research platform (ICGNMD), which aims to address the limited knowledge on NMD aetiology and to improve genetic diagnostic capacities in South African and other African populations.

4.
Front Nutr ; 8: 692504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368208

RESUMO

Background: The sodium iodide symporter is responsible for the transfer of iodine into breast milk and is encoded for by the SLC5A5 gene. The role of genetic variants in the SLC5A5 gene locus in relation to the transfer of iodine from plasma into breast milk in healthy lactating individuals has, to our knowledge, not been explored. Objective: To identify and characterize possible genetic variants of the SLC5A5 gene in women of African descent living in urban South Africa, and to study associations with breast milk iodine concentrations (BMIC) in lactating women. Methods: This study is affiliated to the Nutrition during Pregnancy and Early Development (NuPED) cohort study (n = 250 enrolled pregnant women). In a randomly selected sub-sample of 32 women, the SLC5A5 gene was sequenced to identify known and novel variants. Of the identified variants, genotyping of selected variants was performed in all pregnant women who gave consent for genetic analyses (n = 246), to determine the frequency of the variants in the study sample. Urinary iodine concentration (UIC) in spot urine samples and BMIC were measured to determine iodine status. Associations of SLC5A5 genetic variants with BMIC were studied in lactating women (n = 55). Results: We identified 27 variants from sequencing of gene exomes and 10 variants were selected for further study. There was a significant difference in BMIC between the genotypes of the rs775249401 variant (P = 0.042), with the homozygous GG group having lower BMIC [86.8 (54.9-167.9) µg/L] compared to the (A) allele carriers rs775249401(AG+AA) [143.9 (122.4-169.3) µg/L] (P = 0.042). Of the rs775249401(GG), 49% had UIC <100 µg/L and 61% had BMIC <100 µg/L. On the other hand, 60% of the rs775249401(AG+AA) carriers had UIC <100 µg/L, and none had a BMIC <100 µg/L. Conclusion: Our results suggest that A-allele carriers of rs775249401(AG+AA) are likely to have higher iodine transfer into breast milk compared to the homozygous GG counterparts. Thus, genetic variations in the SLC5A5 gene may play an important role in the transfer of iodine from plasma into breast milk and may partially explain inter-individual variability in BMIC.

5.
Int J Biochem Cell Biol ; 132: 105899, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33279678

RESUMO

Multiple acyl-coenzyme A dehydrogenase deficiency (MADD), or glutaric aciduria type II (GAII), is a group of clinically heterogeneous disorders caused by mutations in electron transfer flavoprotein (ETF) and ETF-ubiquinone oxidoreductase (ETFQO) - the two enzymes responsible for the re-oxidation of enzyme-bound flavin adenine dinucleotide (FADH2) via electron transfer to the respiratory chain at the level of coenzyme Q10. Over the past decade, an increasing body of evidence has further coupled mutations in FAD metabolism (including intercellular riboflavin transport, FAD biosynthesis and FAD transport) to MADD-like phenotypes. In this review we provide a detailed description of the overarching and specific metabolic pathways involved in MADD. We examine the eight associated genes (ETFA, ETFB, ETFDH, FLAD1, SLC25A32 and SLC52A1-3) and clinical phenotypes, and report ∼436 causative mutations following a systematic literature review. Finally, we focus attention on the value and shortcomings of current diagnostic approaches, as well as current and future therapeutic options for MADD and its phenotypic disorders.


Assuntos
Flavina-Adenina Dinucleotídeo/metabolismo , Deficiência Múltipla de Acil Coenzima A Desidrogenase/metabolismo , Animais , Humanos , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Mutação , Fenótipo
7.
J Mol Diagn ; 21(3): 503-513, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30872186

RESUMO

Mitochondrial disease (MD) is a group of rare inherited disorders with clinical heterogeneous phenotypes. Recent advances in next-generation sequencing (NGS) allow for rapid genetic diagnostics in patients who experience MD, resulting in significant strides in determining its etiology. This, however, has not been the case in many patient populations. We report on a molecular diagnostic study using mitochondrial DNA and targeted nuclear DNA (nDNA) NGS of an extensive cohort of predominantly sub-Saharan African pediatric patients with clinical and biochemically defined MD. Patients in this novel cohort presented mostly with muscle involvement (73%). Of the original 212 patients, a muscle respiratory chain deficiency was identified in 127 cases. Genetic analyses were conducted for these 127 cases based on biochemical deficiencies, for both mitochondrial (n = 123) and nDNA using panel-based NGS (n = 86). As a pilot investigation, whole-exome sequencing was performed in a subset of African patients (n = 8). These analyses resulted in the identification of a previously reported pathogenic mitochondrial DNA variant and seven pathogenic or likely pathogenic nDNA variants (ETFDH, SURF1, COQ6, RYR1, STAC3, ALAS2, and TRIOBP), most of which were identified via whole-exome sequencing. This study contributes to knowledge of MD etiology in an understudied, ethnically diverse population; highlights inconsistencies in genotype-phenotype correlations; and proposes future directions for diagnostic approaches in such patient populations.


Assuntos
Núcleo Celular/genética , Etnicidade/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mitocôndrias/genética , Doenças Mitocondriais/genética , Criança , Estudos de Coortes , DNA Mitocondrial/genética , Transporte de Elétrons/genética , Feminino , Humanos , Masculino , Mutação/genética
8.
Mol Genet Metab ; 125(1-2): 38-43, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29530532

RESUMO

BACKGROUND: Coenzyme Q10 (CoQ10) is an important component of the mitochondrial respiratory chain (RC) and is critical for energy production. Although the prevalence of CoQ10 deficiency is still unknown, the general consensus is that the condition is under-diagnosed. The aim of this study was to retrospectively investigate CoQ10 deficiency in frozen muscle specimens in a cohort of ethnically diverse patients who received muscle biopsies for the investigation of a possible RC deficiency (RCD). METHODS: Muscle samples were homogenized whereby 600 ×g supernatants were used to analyze RC enzyme activities, followed by quantification of CoQ10 by stable isotope dilution liquid chromatography tandem mass spectrometry. The experimental group consisted of 156 patients of which 76 had enzymatically confirmed RCDs. To further assist in the diagnosis of CoQ10 deficiency in this cohort, we included sequencing of 18 selected nuclear genes involved with CoQ10 biogenesis in 26 patients with low CoQ10 concentration in muscle samples. RESULTS: Central 95% reference intervals (RI) were established for CoQ10 normalized to citrate synthase (CS) or protein. Nine patients were considered CoQ10 deficient when expressed against CS, while 12 were considered deficient when expressed against protein. In two of these patients the molecular genetic cause could be confirmed, of which one would not have been identified as CoQ10 deficient if expressed only against protein content. CONCLUSION: In this retrospective study, we report a central 95% reference interval for 600 ×g muscle supernatants prepared from frozen samples. The study reiterates the importance of including CoQ10 quantification as part of a diagnostic approach to study mitochondrial disease as it may complement respiratory chain enzyme assays with the possible identification of patients that may benefit from CoQ10 supplementation. However, the anomaly that only a few patients were identified as CoQ10 deficient against both markers (CS and protein), while the majority of patients where only CoQ10 deficient against one of the markers (and not the other), remains problematic. We therefore conclude from our data that, to prevent possibly not diagnosing a potential CoQ10 deficiency, the expression of CoQ10 levels in muscle on both CS as well as protein content should be considered.


Assuntos
Ataxia/diagnóstico , Metabolismo Energético/genética , Mitocôndrias/genética , Doenças Mitocondriais/diagnóstico , Debilidade Muscular/diagnóstico , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Adulto , Ataxia/metabolismo , Ataxia/fisiopatologia , Células Cultivadas , Transporte de Elétrons/genética , Feminino , Regulação da Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/fisiopatologia , Debilidade Muscular/metabolismo , Debilidade Muscular/fisiopatologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Estudos Retrospectivos , Ubiquinona/genética , Ubiquinona/metabolismo
9.
J Neurol Sci ; 384: 121-125, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29249369

RESUMO

Neonatal-onset multiple acyl-CoA dehydrogenase deficiency (MADD type I) is an autosomal recessive disorder of the electron transfer flavoprotein function characterized by a severe clinical and biochemical phenotype, including congenital abnormalities with unresponsiveness to riboflavin treatment as distinguishing features. From a retrospective study, relying mainly on metabolic data, we have identified a novel mutation, c.1067G>A (p.Gly356Glu) in exon 8 of ETFDH, in three South African Caucasian MADD patients with the index patient presenting the hallmark features of type I MADD and two patients with compound heterozygous (c.1067G>A+c.1448C>T) mutations presenting with MADD type III. SDS-PAGE western blot confirmed the significant effect of this mutation on ETFDH structural instability. The identification of this novel mutation in three families originating from the South African Afrikaner population is significant to direct screening and strategies for this disease, which amongst the organic acidemias routinely screened for, is relatively frequently observed in this population group.


Assuntos
Flavoproteínas Transferidoras de Elétrons/genética , Proteínas Ferro-Enxofre/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Criança , Família , Evolução Fatal , Feminino , Humanos , Recém-Nascido , Masculino , Deficiência Múltipla de Acil Coenzima A Desidrogenase/fisiopatologia , Fenótipo , Estudos Retrospectivos , África do Sul , População Branca/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...