Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Anat ; 243(2): 311-318, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37024435

RESUMO

Transitional vertebrae at the thoracolumbar region are called thoracolumbar transitional vertebrae (TLTV) and retain physical features from the thoracic and lumbar regions. Since TLTV were first classified 40 years ago, there has been much discrepancy regarding its features, identification and clinical relevance. Vertebral body levels are used in the medical field as a frame of reference to locate specific organs, vessels, nerves or landmarks. Any numeric variation or deviation in the vertebral column may lead to clinical errors. Previous findings have suggested a high association between numeric variation and the presence of TLTV. Therefore, the aim of this study was to identify the types of TLTV observed and to identify any possible associated numeric variation in the vertebral column. This study also aimed to validate the established technique to quantitatively differentiate TLTV from T12 and L1 at the thoracolumbar junction using skeletal remains from a South African population group. Skeletal remains (n = 187) remains from the Pretoria bone collection were assessed. Measurements were taken of the angle of the superior zygapophyseal processes of the last thoracic vertebra (T12), the first lumbar (L1), and identified TLTV. The results indicate a TLTV prevalence of 35% (n = 66/187). The results show that each vertebral type (T12, L1, TLTV) fall into independent confidence intervals: T12 is 188° ± 9.22 (CI: 187° < µ < 189.6°), 110° ± 7.52 (CI: 109.2° < µ < 111.3°) in L1, and 135° ± 24.51 (CI: 130.4° < µ < 139.1°) in the TLTV. This study observed that 70% of cases with TLTV was associated with numeric variation in the spine, both homeotic and meristic and that TLTV has a 35% prevalence. The results clearly show that quantitative morphometric analysis can effectively differentiate TLTV from other vertebral types at the thoracolumbar junction in skeletal remains.


Assuntos
Restos Mortais , Vértebras Lombares , Humanos , Vértebras Lombares/anatomia & histologia , África do Sul , Vértebras Torácicas/anatomia & histologia , População da África Austral
2.
Anat Cell Biol ; 55(4): 399-405, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36071544

RESUMO

Cases of associations between random spinal congenital defects have previously been reported, yet several questions remain unanswered. Firstly, why are associations between what seems to be random combinations of vertebral malformations observed? Secondly, is there a common event or pattern that connects the associated defects? Therefore, this study aimed to identify congenital defects in the vertebral column and also to determine whether any associations, if present, between vertebral malformations exist. This article consequently discusses the possible embryological disruptions that may lead to the formation of various defects in the vertebral column. A random skeletal sample (n=187) was selected from the Pretoria Bone Collection housed in the Department of Anatomy, University of Pretoria (Ethics 678/2018). The sample was evaluated to determine the frequencies of spinal congenital defects in each set of remains. Identifiable congenital malformations were observed in 48.1% (n=90/187) of the sample. The results demonstrated a high probability of association between the different defects observed in the vertebral column. Findings are of value as they provide a reasonable explanation to why seemingly random cases of associations have been reported by several authors. This study is clinically relevant as severe spinal defects have been shown to have high morbidity in patients and mortality in infants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA