Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777599

RESUMO

Mature vertebrates maintain posture using vestibulospinal neurons that transform sensed in-stability into reflexive commands to spinal motor circuits. Postural stability improves across development. However, due to the complexity of terrestrial locomotion, vestibulospinal con-tributions to postural refinement in early life remain unexplored. Here we leveraged the relative simplicity of underwater locomotion to quantify the postural consequences of losing vestibulospinal neurons during development in larval zebrafish of undifferentiated sex. By comparing posture at two timepoints, we discovered that later lesions of vestibulospinal neu-rons led to greater instability. Analysis of thousands of individual swim bouts revealed that lesions disrupted movement timing and corrective reflexes without impacting swim kinemat-ics, and that this effect was particularly strong in older larvae. Using a generative model of swimming, we showed how these disruptions could account for the increased postural variability at both timepoints. Finally, late lesions disrupted the fin/trunk coordination observed in older larvae, linking vestibulospinal neurons to postural control schemes used to navigate in depth. Since later lesions were considerably more disruptive to postural sta-bility, we conclude that vestibulospinal contributions to balance increase as larvae mature. Vestibulospinal neurons are highly conserved across vertebrates; we therefore propose that they are a substrate for developmental improvements to postural control.Significance Statement Many animals experience balance improvements during early life. Mature vertebrates use vestibulospinal neurons to transform sensed instability into postural corrections. To under-stand if/how these neurons shape postural development, we ablated them at two develop-mentally important timepoints in larval zebrafish. Loss of vestibulospinal neurons disrupted specific stabilizing behaviors (swim timing, tilt correction, and fin/body coordination) more profoundly in older fish. We conclude that postural development happens in part by changes to vestibulospinal neurons - a significant step towards understanding how developing brains gain the ability to balance.

2.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559209

RESUMO

The sensation of gravity anchors our perception of the environment and is crucial for navigation. However, the neural circuits that transform gravity into commands for navigation are undefined. We first determined that larval zebrafish (Danio rerio) navigate vertically by maintaining a consistent heading across a series of upward climb or downward dive bouts. Gravity-blind mutant fish swim with more variable heading and excessive veering, leading to inefficient vertical navigation. After targeted photoablation of ascending vestibular neurons and spinal projecting midbrain neurons, but not vestibulospinal neurons, vertical navigation was impaired. These data define a sensorimotor circuit that uses evolutionarily-conserved brainstem architecture to transform gravitational signals into persistent heading for vertical navigation. The work lays a foundation to understand how vestibular inputs allow animals to move efficiently through their environment.

3.
bioRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38328242

RESUMO

To control elevation underwater, aquatic vertebrates integrate multisensory information (e.g., vestibular, visual, proprioceptive) to guide posture and swim kinematics. Here we characterized how larval zebrafish changed posture and locomotive strategies after imposed instability (decreased buoyancy) in the presence and absence of visual cues. We discovered that larvae sank more after acute loss of lateral line (flow-sensing) hair cells. In response, larvae engaged different compensatory strategies, depending on whether they were in the light or dark. In the dark, larvae swam more frequently, engaging their trunk to steer their nose up and climb more effectively. However, in the light, larvae climbed more often, engaging both pectoral fins and trunk to elevate. We conclude that larvae sense instability and use vestibular and visual information as available to control posture and trajectory. Our work is a step towards understanding the multisensory neural computations responsible for control strategies that allow orientation and navigation in depth.

4.
bioRxiv ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38328255

RESUMO

Sensorimotor reflex circuits engage distinct neuronal subtypes, defined by precise connectivity, to transform sensation into compensatory behavior. Whether and how motor neuron populations specify the subtype fate and/or sensory connectivity of their pre-motor partners remains controversial. Here, we discovered that motor neurons are dispensable for proper connectivity in the vestibular reflex circuit that stabilizes gaze. We first measured activity following vestibular sensation in pre-motor projection neurons after constitutive loss of their extraocular motor neuron partners. We observed normal responses and topography indicative of unchanged functional connectivity between sensory neurons and projection neurons. Next, we show that projection neurons remain anatomically and molecularly poised to connect appropriately with their downstream partners. Lastly, we show that the transcriptional signatures that typify projection neurons develop independently of motor partners. Our findings comprehensively overturn a long-standing model: that connectivity in the circuit for gaze stabilization is retrogradely determined by motor partner-derived signals. By defining the contribution of motor neurons to specification of an archetypal sensorimotor circuit, our work speaks to comparable processes in the spinal cord and advances our understanding of general principles of neural development.

5.
bioRxiv ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-37745506

RESUMO

Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate development of new approaches to perturb cerebellar function in simpler vertebrates. Here, we used a powerful chemogenetic tool (TRPV1/capsaicin) to define the role of Purkinje cells - the output neurons of the cerebellar cortex - as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation disrupted postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically-tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.

6.
Neuron ; 112(1): 93-112.e10, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38096817

RESUMO

Astrocytes play crucial roles in regulating neural circuit function by forming a dense network of synapse-associated membrane specializations, but signaling pathways regulating astrocyte morphogenesis remain poorly defined. Here, we show the Drosophila lipid-binding G protein-coupled receptor (GPCR) Tre1 is required for astrocytes to establish their intricate morphology in vivo. The lipid phosphate phosphatases Wunen/Wunen2 also regulate astrocyte morphology and, via Tre1, mediate astrocyte-astrocyte competition for growth-promoting lipids. Loss of s1pr1, the functional analog of Tre1 in zebrafish, disrupts astrocyte process elaboration, and live imaging and pharmacology demonstrate that S1pr1 balances proper astrocyte process extension/retraction dynamics during growth. Loss of Tre1 in flies or S1pr1 in zebrafish results in defects in simple assays of motor behavior. Tre1 and S1pr1 are thus potent evolutionarily conserved regulators of the elaboration of astrocyte morphological complexity and, ultimately, astrocyte control of behavior.


Assuntos
Proteínas de Drosophila , Peixe-Zebra , Animais , Astrócitos/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Fosfolipídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo
7.
bioRxiv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38105966

RESUMO

Mature vertebrates maintain posture using vestibulospinal neurons that transform sensed instability into reflexive commands to spinal motor circuits. Postural stability improves across development. However, due to the complexity of terrestrial locomotion, vestibulospinal contributions to postural refinement in early life remain unexplored. Here we leveraged the relative simplicity of underwater locomotion to quantify the postural consequences of losing vestibulospinal neurons during development in larval zebrafish of undifferentiated sex. By comparing posture at two timepoints, we discovered that later lesions of vestibulospinal neurons led to greater instability. Analysis of thousands of individual swim bouts revealed that lesions disrupted movement timing and corrective reflexes without impacting swim kinematics, and that this effect was particularly strong in older larvae. Using a generative model of swimming, we showed how these disruptions could account for the increased postural variability at both timepoints. Finally, late lesions disrupted the fin/trunk coordination observed in older larvae, linking vestibulospinal neurons to postural control schemes used to navigate in depth. Since later lesions were considerably more disruptive to postural stability, we conclude that vestibulospinal contributions to balance increase as larvae mature. Vestibulospinal neurons are highly conserved across vertebrates; we therefore propose that they are a substrate for developmental improvements to postural control.

8.
Cell Rep ; 42(9): 113049, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676768

RESUMO

Locomotion requires precise control of the strength and speed of muscle contraction and is achieved by recruiting functionally distinct subtypes of motor neurons (MNs). MNs are essential to movement and differentially susceptible in disease, but little is known about how MNs acquire functional subtype-specific features during development. Using single-cell RNA profiling in embryonic and larval zebrafish, we identify novel and conserved molecular signatures for MN functional subtypes and identify genes expressed in both early post-mitotic and mature MNs. Assessing MN development in genetic mutants, we define a molecular program essential for MN functional subtype specification. Two evolutionarily conserved transcription factors, Prdm16 and Mecom, are both functional subtype-specific determinants integral for fast MN development. Loss of prdm16 or mecom causes fast MNs to develop transcriptional profiles and innervation similar to slow MNs. These results reveal the molecular diversity of vertebrate axial MNs and demonstrate that functional subtypes are specified through intrinsic transcriptional codes.


Assuntos
Medula Espinal , Peixe-Zebra , Animais , Neurônios Motores/fisiologia , Fatores de Transcrição/genética , Locomoção
9.
Cell Rep ; 42(6): 112573, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37267107

RESUMO

Balance and movement are impaired in many neurological disorders. Recent advances in behavioral monitoring provide unprecedented access to posture and locomotor kinematics but without the throughput and scalability necessary to screen candidate genes/potential therapeutics. Here, we present a scalable apparatus to measure posture and locomotion (SAMPL). SAMPL includes extensible hardware and open-source software with real-time processing and can acquire data from D. melanogaster, C. elegans, and D. rerio as they move vertically. Using SAMPL, we define how zebrafish balance as they navigate vertically and discover small but systematic variations among kinematic parameters between genetic backgrounds. We demonstrate SAMPL's ability to resolve differences in posture and navigation as a function of effect size and data gathered, providing key data for screens. SAMPL is therefore both a tool to model balance and locomotor disorders and an exemplar of how to scale apparatus to support screens.


Assuntos
Caenorhabditis elegans , Drosophila melanogaster , Animais , Peixe-Zebra , Comportamento Animal , Locomoção , Postura
10.
eNeuro ; 10(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37268420

RESUMO

Vestibulospinal neurons integrate sensed imbalance to regulate postural reflexes. As an evolutionarily conserved neural population, understanding their synaptic and circuit-level properties can offer insight into vertebrate antigravity reflexes. Motivated by recent work, we set out to verify and extend the characterization of vestibulospinal neurons in the larval zebrafish. Using current-clamp recordings together with stimulation, we observed that larval zebrafish vestibulospinal neurons are silent at rest, yet capable of sustained spiking following depolarization. Neurons responded systematically to a vestibular stimulus (translation in the dark); responses were abolished after chronic or acute loss of the utricular otolith. Voltage-clamp recordings at rest revealed strong excitatory inputs with a characteristic multimodal distribution of amplitudes, as well as strong inhibitory inputs. Excitatory inputs within a particular mode (amplitude range) routinely violated refractory period criteria and exhibited complex sensory tuning, suggesting a nonunitary origin. Next, using a unilateral loss-of-function approach, we characterized the source of vestibular inputs to vestibulospinal neurons from each ear. We observed systematic loss of high-amplitude excitatory inputs after utricular lesions ipsilateral, but not contralateral, to the recorded vestibulospinal neuron. In contrast, while some neurons had decreased inhibitory inputs after either ipsilateral or contralateral lesions, there were no systematic changes across the population of recorded neurons. We conclude that imbalance sensed by the utricular otolith shapes the responses of larval zebrafish vestibulospinal neurons through both excitatory and inhibitory inputs. Our findings expand our understanding of how a vertebrate model, the larval zebrafish, might use vestibulospinal input to stabilize posture. More broadly, when compared with recordings in other vertebrates, our data speak to conserved origins of vestibulospinal synaptic input.


Assuntos
Neurônios , Peixe-Zebra , Animais , Neurônios/fisiologia , Reflexo , Medula Espinal/fisiologia , Núcleos Vestibulares
11.
bioRxiv ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993365

RESUMO

Vestibulospinal neurons integrate sensed imbalance to regulate postural reflexes. As an evolutionarily-conserved neural population, understanding their synaptic and circuit-level properties can offer insight into vertebrate antigravity reflexes. Motivated by recent work, we set out to verify and extend the characterization of vestibulospinal neurons in the larval zebrafish. Using current clamp recordings together with stimulation, we observed that larval zebrafish vestibulospinal neurons are silent at rest, yet capable of sustained spiking following depolarization. Neurons responded systematically to a vestibular stimulus (translation in the dark); responses were abolished after chronic or acute loss of the utricular otolith. Voltage clamp recordings at rest revealed strong excitatory inputs with a characteristic multimodal distribution of amplitudes, as well as strong inhibitory inputs. Excitatory inputs within a particular mode (amplitude range) routinely violated refractory period criteria and exhibited complex sensory tuning, suggesting a non-unitary origin. Next, using a unilateral loss-of-function approach, we characterized the source of vestibular inputs to vestibulospinal neurons from each ear. We observed systematic loss of high-amplitude excitatory inputs after utricular lesions ipsilateral, but not contralateral to the recorded vestibulospinal neuron. In contrast, while some neurons had decreased inhibitory inputs after either ipsilateral or contralateral lesions, there were no systematic changes across the population of recorded neurons. We conclude that imbalance sensed by the utricular otolith shapes the responses of larval zebrafish vestibulospinal neurons through both excitatory and inhibitory inputs. Our findings expand our understanding of how a vertebrate model, the larval zebrafish, might use vestibulospinal input to stabilize posture. More broadly, when compared to recordings in other vertebrates, our data speak to conserved origins of vestibulospinal synaptic input.

12.
Curr Biol ; 33(7): 1265-1281.e7, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36924768

RESUMO

Across the nervous system, neurons with similar attributes are topographically organized. This topography reflects developmental pressures. Oddly, vestibular (balance) nuclei are thought to be disorganized. By measuring activity in birthdated neurons, we revealed a functional map within the central vestibular projection nucleus that stabilizes gaze in the larval zebrafish. We first discovered that both somatic position and stimulus selectivity follow projection neuron birthdate. Next, with electron microscopy and loss-of-function assays, we found that patterns of peripheral innervation to projection neurons were similarly organized by birthdate. Finally, birthdate revealed spatial patterns of axonal arborization and synapse formation to projection neuron outputs. Collectively, we find that development reveals previously hidden organization to the input, processing, and output layers of a highly conserved vertebrate sensorimotor circuit. The spatial and temporal attributes we uncover constrain the developmental mechanisms that may specify the fate, function, and organization of vestibulo-ocular reflex neurons. More broadly, our data suggest that, like invertebrates, temporal mechanisms may assemble vertebrate sensorimotor architecture.


Assuntos
Neurônios , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Neurônios/fisiologia , Reflexo Vestíbulo-Ocular/fisiologia , Tronco Encefálico , Núcleos Vestibulares/fisiologia
13.
bioRxiv ; 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36712122

RESUMO

Balance and movement are impaired in a wide variety of neurological disorders. Recent advances in behavioral monitoring provide unprecedented access to posture and locomotor kinematics, but without the throughput and scalability necessary to screen candidate genes / potential therapeutics. We present a powerful solution: a Scalable Apparatus to Measure Posture and Locomotion (SAMPL). SAMPL includes extensible imaging hardware and low-cost open-source acquisition software with real-time processing. We first demonstrate that SAMPL's hardware and acquisition software can acquire data from from D. melanogaster, C. elegans, and D. rerio as they move vertically. Next, we leverage SAMPL's throughput to rapidly (two weeks) gather a new zebrafish dataset. We use SAMPL's analysis and visualization tools to replicate and extend our current understanding of how zebrafish balance as they navigate through a vertical environment. Next, we discover (1) that key kinematic parameters vary systematically with genetic background, and (2) that such background variation is small relative to the changes that accompany early development. Finally, we simulate SAMPL's ability to resolve differences in posture or vertical navigation as a function of affect size and data gathered -- key data for screens. Taken together, our apparatus, data, and analysis provide a powerful solution for labs using small animals to investigate balance and locomotor disorders at scale. More broadly, SAMPL is both an adaptable resource for labs looking process videographic measures of behavior in real-time, and an exemplar of how to scale hardware to enable the throughput necessary for screening.

14.
J Neurosci ; 43(6): 936-948, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36517242

RESUMO

Animals use information about gravity and other destabilizing forces to balance and navigate through their environment. Measuring how brains respond to these forces requires considerable technical knowledge and/or financial resources. We present a simple alternative-Tilt In Place Microscopy (TIPM), a low-cost and noninvasive way to measure neural activity following rapid changes in body orientation. Here, we used TIPM to study vestibulospinal neurons in larval zebrafish during and immediately after roll tilts. Vestibulospinal neurons responded with reliable increases in activity that varied as a function of ipsilateral tilt amplitude. TIPM differentiated tonic (i.e., sustained tilt) from phasic responses, revealing coarse topography of stimulus sensitivity in the lateral vestibular nucleus. Neuronal variability across repeated sessions was minor relative to trial-to-trial variability, allowing us to use TIPM for longitudinal studies of the same neurons across two developmental time points. There, we observed global increases in response strength and systematic changes in the neural representation of stimulus direction. Our data extend classical characterization of the body tilt representation by vestibulospinal neurons and establish the utility of TIPM to study the neural basis of balance, especially in developing animals.SIGNIFICANCE STATEMENT Vestibular sensation influences everything from navigation to interoception. Here, we detail a straightforward, validated, and nearly universal approach to image how the nervous system senses and responds to body tilts. We use our new method to replicate and expand on past findings of tilt sensing by a conserved population of spinal-projecting vestibular neurons. The simplicity and broad compatibility of our approach will democratize the study of the response of the brain to destabilization, particularly across development.


Assuntos
Microscopia , Medula Espinal , Animais , Medula Espinal/fisiologia , Peixe-Zebra , Postura/fisiologia , Neurônios/fisiologia , Núcleos Vestibulares/fisiologia
15.
Front Neurosci ; 16: 904765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600621

RESUMO

Myelin is classically known for its role in facilitating nerve conduction. However, recent work casts myelin as a key player in both proper neuronal circuit development and function. With this expanding role comes a demand for new approaches to characterize and perturb myelin in the context of tractable neural circuits as they mature. Here we argue that the simplicity, strong conservation, and clinical relevance of the vestibular system offer a way forward. Further, the tractability of the larval zebrafish affords a uniquely powerful means to test open hypotheses of myelin's role in normal development and disordered vestibular circuits. We end by identifying key open questions in myelin neurobiology that the zebrafish vestibular system is particularly well-suited to address.

16.
Curr Biol ; 32(2): R91-R93, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35077698

RESUMO

Efference copies of movement-inducing neural signals have been proposed to serve a role in gaze stabilization. Prior work has demonstrated a spino-extraocular motor circuit in the tadpole that relays copies of spinal commands to extraocular motor neurons. A recent study demonstrates the presence of this circuitry in mice, suggesting a unique method of gaze stabilization in the locomoting mouse.


Assuntos
Movimentos Oculares , Animais , Larva , Camundongos
17.
Curr Biol ; 30(1): R10-R12, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31910366

RESUMO

Animals must distinguish external stimuli from self-generated sensory input to guide appropriate behaviors. A recent study elucidates a cellular mechanism by which zebrafish perform this distinction while maintaining sensitivity to external environmental signals.


Assuntos
Sistema da Linha Lateral , Animais , Células Ciliadas Auditivas , Peixe-Zebra
18.
J Neurosci ; 40(1): 143-158, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31685652

RESUMO

Down syndrome cell adhesion molecules (dscam and dscaml1) are essential regulators of neural circuit assembly, but their roles in vertebrate neural circuit function are still mostly unexplored. We investigated the functional consequences of dscaml1 deficiency in the larval zebrafish (sexually undifferentiated) oculomotor system, where behavior, circuit function, and neuronal activity can be precisely quantified. Genetic perturbation of dscaml1 resulted in deficits in retinal patterning and light adaptation, consistent with its known roles in mammals. Oculomotor analyses revealed specific deficits related to the dscaml1 mutation, including severe fatigue during gaze stabilization, reduced saccade amplitude and velocity in the light, greater disconjugacy, and impaired fixation. Two-photon calcium imaging of abducens neurons in control and dscaml1 mutant animals confirmed deficits in saccade-command signals (indicative of an impairment in the saccadic premotor pathway), whereas abducens activation by the pretectum-vestibular pathway was not affected. Together, we show that loss of dscaml1 resulted in impairments in specific oculomotor circuits, providing a new animal model to investigate the development of oculomotor premotor pathways and their associated human ocular disorders.SIGNIFICANCE STATEMENTDscaml1 is a neural developmental gene with unknown behavioral significance. Using the zebrafish model, this study shows that dscaml1 mutants have a host of oculomotor (eye movement) deficits. Notably, the oculomotor phenotypes in dscaml1 mutants are reminiscent of human ocular motor apraxia, a neurodevelopmental disorder characterized by reduced saccade amplitude and gaze stabilization deficits. Population-level recording of neuronal activity further revealed potential subcircuit-specific requirements for dscaml1 during oculomotor behavior. These findings underscore the importance of dscaml1 in the development of visuomotor function and characterize a new model to investigate potential circuit deficits underlying human oculomotor disorders.


Assuntos
Movimentos Oculares/fisiologia , Adaptação Ocular/genética , Adaptação Ocular/fisiologia , Células Amácrinas/fisiologia , Animais , Animais Geneticamente Modificados , Sinalização do Cálcio , Moléculas de Adesão Celular/fisiologia , Movimentos Oculares/genética , Fixação Ocular/genética , Fixação Ocular/fisiologia , Larva , Locomoção , Fadiga Muscular , Mutação , Músculos Oculomotores/crescimento & desenvolvimento , Músculos Oculomotores/fisiopatologia , Retina/crescimento & desenvolvimento , Retina/ultraestrutura , Movimentos Sacádicos/genética , Movimentos Sacádicos/fisiologia , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/fisiologia
19.
Nature ; 576(7785): 46-47, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31792417
20.
Elife ; 82019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31591962

RESUMO

Mature locomotion requires that animal nervous systems coordinate distinct groups of muscles. The pressures that guide the development of coordination are not well understood. To understand how and why coordination might emerge, we measured the kinematics of spontaneous vertical locomotion across early development in zebrafish (Danio rerio) . We found that zebrafish used their pectoral fins and bodies synergistically during upwards swims. As larvae developed, they changed the way they coordinated fin and body movements, allowing them to climb with increasingly stable postures. This fin-body synergy was absent in vestibular mutants, suggesting sensed imbalance promotes coordinated movements. Similarly, synergies were systematically altered following cerebellar lesions, identifying a neural substrate regulating fin-body coordination. Together these findings link the vestibular sense to the maturation of coordinated locomotion. Developing zebrafish improve postural stability by changing fin-body coordination. We therefore propose that the development of coordinated locomotion is regulated by vestibular sensation.


Assuntos
Locomoção , Desempenho Psicomotor , Vestíbulo do Labirinto/fisiologia , Nadadeiras de Animais/fisiologia , Animais , Embrião não Mamífero , Músculo Esquelético/fisiologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...