Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464155

RESUMO

Insufficient vascularization is a main barrier to creating engineered bone grafts for treating large and ischemic defects. Modular tissue engineering approaches have promise in this application because of the ability to combine tissue types and to localize microenvironmental cues to drive desired cell function. In direct bone formation approaches, it is challenging to maintain sustained osteogenic activity, since vasculogenic cues can inhibit tissue mineralization. This study harnessed the physiological process of endochondral ossification to create multiphase tissues that allowed concomitant mineralization and vessel formation. Mesenchymal stromal cells in pellet culture were differentiated toward a cartilage phenotype, followed by induction to chondrocyte hypertrophy. Hypertrophic pellets exhibited increased alkaline phosphatase activity, calcium deposition, and osteogenic gene expression relative to chondrogenic pellets. In addition, hypertrophic pellets secreted and sequestered angiogenic factors, and supported new blood vessel formation by co-cultured endothelial cells and undifferentiated stromal cells. Multiphase constructs created by combining hypertrophic pellets and vascularizing microtissues and maintained in unsupplemented basal culture medium were shown to support robust vascularization and sustained tissue mineralization. These results demonstrate a new in vitro strategy to produce multiphase engineered constructs that concomitantly support the generation of mineralize and vascularized tissue in the absence of exogenous osteogenic or vasculogenic medium supplements.

2.
J Biomed Mater Res A ; 112(4): 549-561, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37326361

RESUMO

There is a significant clinical need to develop effective vascularization strategies for tissue engineering and the treatment of ischemic pathologies. In patients afflicted with critical limb ischemia, comorbidities may limit common revascularization strategies. Cell-encapsulating modular microbeads possess a variety of advantageous properties, including the ability to support prevascularization in vitro while retaining the ability to be injected in a minimally invasive manner in vivo. Here, fibrin microbeads containing human umbilical vein endothelial cells (HUVEC) and bone marrow-derived mesenchymal stromal cells (MSC) were cultured in suspension for 3 days (D3 PC microbeads) before being implanted within intramuscular pockets in a SCID mouse model of hindlimb ischemia. By 14 days post-surgery, animals treated with D3 PC microbeads showed increased macroscopic reperfusion of ischemic foot pads and improved limb salvage compared to the cellular controls. Delivery of HUVEC and MSC via microbeads led to the formation of extensive microvascular networks throughout the implants. Engineered vessels of human origins showed evidence of inosculation with host vasculature, as indicated by erythrocytes present in hCD31+ vessels. Over time, the total number of human-derived vessels within the implant region decreased as networks remodeled and an increase in mature, pericyte-supported vascular structures was observed. Our findings highlight the potential therapeutic benefit of developing modular, prevascularized microbeads as a minimally invasive therapeutic for treating ischemic tissues.


Assuntos
Fibrina , Neovascularização Fisiológica , Animais , Camundongos , Humanos , Células Cultivadas , Fibrina/farmacologia , Fibrina/química , Microesferas , Camundongos SCID , Células Endoteliais da Veia Umbilical Humana , Engenharia Tecidual , Neovascularização Patológica , Isquemia/terapia
3.
Biotechnol Bioeng ; 119(11): 3284-3296, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35922969

RESUMO

Bioengineered bone designed to heal large defects requires concomitant development of osseous and vascular tissue to ensure engraftment and survival. Adult human mesenchymal stromal cells (MSC) are promising in this application because they have demonstrated both osteogenic and vasculogenic potential. This study employed a modular approach in which cells were encapsulated in biomaterial carriers (microtissues) designed to support tissue-specific function. Osteogenic microtissues consisting of MSC embedded in a collagen-chitosan matrix; vasculogenic (VAS) microtissues consisted of endothelial cells and MSC in a fibrin matrix. Microtissues were precultured under differentiation conditions to induce appropriate MSC lineage commitment, and were then combined in a surrounding fibrin hydrogel to create a multimodular construct. Results demonstrated the ability of microtissues to support lineage commitment, and that preculture primes the microtissues for the desired function. Combination of osteogenic and vasculogenic microtissues into multimodular constructs demonstrated that osteogenic priming resulted in sustained osteogenic activity even when cultured in vasculogenic medium, and that vasculogenic priming induced a pericyte-like phenotype that resulted in development of a primitive vessel network in the constructs. The modular approach allows microtissues to be separately precultured to harness the dual differentiation potential of MSC to support both bone and blood vessel formation in a unified construct.


Assuntos
Quitosana , Células Endoteliais , Materiais Biocompatíveis , Diferenciação Celular , Colágeno , Fibrina , Humanos , Hidrogéis/farmacologia , Osteogênese , Engenharia Tecidual/métodos
4.
Tissue Eng Part A ; 27(21-22): 1376-1386, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33599160

RESUMO

A key challenge in the treatment of large bone defects is the need to provide an adequate and stable vascular supply as new tissue develops. Bone tissue engineering applies selected biomaterials and cell types to create an environment that promotes tissue formation, maturation, and remodeling. Mesenchymal stromal cells (MSCs) have been widely used in these strategies because of their established effects on bone formation, and their ability to act as stabilizing pericytes that support vascular regeneration by endothelial cells (ECs). However, the creation of vascularized bone tissue in vitro requires coupling of osteogenesis and vasculogenesis in a three-dimensional (3D) biomaterial environment. In the present study, 3D fibrin hydrogels containing MSCs and ECs were prevascularized in vitro for 7 days to create an endothelial network in the matrix, and were subsequently cultured for a further 14 days under either continued vasculogenic stimulus, a combination of vasculogenic and osteogenic (hybrid) stimulus, or only osteogenic stimulus. It was found that ECs produced robust vessel networks in 3D fibrin matrices over 7 days of culture, and these networks continued to expand over the 14-day treatment period under vasculogenic conditions. Culture in hybrid medium resulted in maintenance of vessel networks for 14 days, while osteogenic culture abrogated vessel formation. These trends were mirrored in data representing overall cell viability and cell number in the 3D fibrin constructs. MSCs were found to colocalize with EC networks under vasculogenic and hybrid conditions, suggesting pericyte-like function. The bone marker alkaline phosphatase increased over time in hybrid and osteogenic media, but mineral deposition was evident only under purely osteogenic conditions. These results suggest that hybrid media compositions can support some aspects of multiphase tissue formation, but that alternative strategies are needed to obtain robust, concomitant vascularization, and osteogenesis in engineered tissues in vitro. Impact statement The combined use of mesenchymal stromal cells (MSCs) and endothelial cells to concomitantly produce mature bone and a nourishing vasculature is a promising tissue engineering approach to treating large bone defects. However, it is challenging to create and maintain vascular networks in the presence of osteogenic cues. This study used a 3D fibrin matrix to demonstrate that prevascularization of the construct can lead to maintenance of vessel structures over time, but that osteogenesis is compromised under these conditions. This work illuminates the capacity of MSCs to serve as both supportive pericytes and as osteoprogenitor cells, and motivates new strategies for coupling osteogenesis and vasculogenesis in engineered bone tissues.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Técnicas de Cocultura , Células Endoteliais , Hidrogéis/farmacologia
5.
Tissue Eng Part B Rev ; 27(3): 199-214, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32854589

RESUMO

Inadequate vascularization of engineered tissue constructs is a main challenge in developing a clinically impactful therapy for large, complex, and recalcitrant bone defects. It is well established that bone and blood vessels form concomitantly during development, as well as during repair after injury. Endothelial cells (ECs) and mesenchymal stromal cells (MSCs) are known to be key players in orthopedic tissue regeneration and vascularization, and these cell types have been used widely in tissue engineering strategies to create vascularized bone. Coculture studies have demonstrated that there is crosstalk between ECs and MSCs that can lead to synergistic effects on tissue regeneration. At the same time, the complexity in fabricating, culturing, and characterizing engineered tissue constructs containing multiple cell types presents a challenge in creating multifunctional tissues. In particular, the timing, spatial distribution, and cell phenotypes that are most conducive to promoting concurrent bone and vessel formation are not well understood. This review describes the processes of bone and vascular development, and how these have been harnessed in tissue engineering strategies to create vascularized bone. There is an emphasis on interactions between ECs and MSCs, and the culture systems that can be used to understand and control these interactions within a single engineered construct. Developmental engineering strategies to mimic endochondral ossification are discussed as a means of generating vascularized orthopedic tissues. The field of tissue engineering has made impressive progress in creating tissue replacements. However, the development of larger, more complex, and multifunctional engineered orthopedic tissues will require a better understanding of how osteogenesis and vasculogenesis are coupled in tissue regeneration. Impact statement Vascularization of large engineered tissue volumes remains a challenge in developing new and more biologically functional bone grafts. A better understanding of how blood vessels develop during bone formation and regeneration is needed. This knowledge can then be applied to develop new strategies for promoting both osteogenesis and vasculogenesis during the creation of engineered orthopedic tissues. This article summarizes the processes of bone and blood vessel development, with a focus on how endothelial cells and mesenchymal stromal cells interact to form vascularized bone both during development and growth, as well as tissue healing. It is meant as a resource for tissue engineers who are interested in creating vascularized tissue, and in particular to those developing cell-based therapies for large, complex, and recalcitrant bone defects.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Regeneração Óssea , Diferenciação Celular , Células Endoteliais , Neovascularização Fisiológica , Engenharia Tecidual , Alicerces Teciduais
6.
Biomaterials ; 208: 32-44, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30991216

RESUMO

Repair of complex fractures with bone loss requires a potent, space-filling intervention to promote regeneration of bone. We present a biomaterials-based strategy combining mesenchymal stromal cells (MSC) with a chitosan-collagen matrix to form modular microtissues designed for delivery through a needle to conformally fill cavital defects. Implantation of microtissues into a calvarial defect in the mouse showed that osteogenically pre-differentiated MSC resulted in complete bridging of the cavity, while undifferentiated MSC produced mineralized tissue only in apposition to native bone. Decreasing the implant volume reduced bone regeneration, while increasing the MSC concentration also attenuated bone formation, suggesting that the cell-matrix ratio is important in achieving a robust response. Conformal filling of the defect with microtissues in a carrier gel resulted in complete healing. Taken together, these results show that modular microtissues can be used to augment the differentiated function of MSC and provide an extracellular environment that potentiates bone repair.


Assuntos
Células-Tronco Mesenquimais/citologia , Osteogênese/fisiologia , Animais , Regeneração Óssea/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Quitosana/química , Colágeno/química , Espectroscopia de Ressonância Magnética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA