Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 144: 932-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26432535

RESUMO

This study investigated organic micropollutant (OMP) biodegradation rates in laboratory-scale soil columns simulating river bank filtration (RBF) processes. The dosed OMP mixture consisted of 11 pharmaceuticals, 6 herbicides, 2 insecticides and 1 solvent. Columns were filled with soil from a RBF site and were fed with four different organic carbon fractions (hydrophilic, hydrophobic, transphilic and river water organic matter (RWOM)). Additionally, the effect of a short-term OMP/dissolved organic carbon (DOC) shock-load (e.g. quadrupling the OMP concentrations and doubling the DOC concentration) on OMP biodegradation rates was investigated to assess the resilience of RBF systems. The results obtained in this study imply that - in contrast to what is observed for managed aquifer recharge systems operating on wastewater effluent - OMP biodegradation rates are not affected by the type of organic carbon fraction fed to the soil column, in case of stable operation. No effect of a short-term DOC shock-load on OMP biodegradation rates between the different organic carbon fractions was observed. This means that the RBF site simulated in this study is resilient towards transient higher DOC concentrations in the river water. However, a temporary OMP shock-load affected OMP biodegradation rates observed for the columns fed with the river water organic matter (RWOM) and the hydrophilic fraction of the river water organic matter. These different biodegradation rates did not correlate with any of the parameters investigated in this study (cellular adenosine triphosphate (cATP), DOC removal, specific ultraviolet absorbance (SUVA), richness/evenness of the soil microbial population or OMP category (hydrophobicity/charge).


Assuntos
Modelos Teóricos , Compostos Orgânicos/análise , Rios/química , Microbiologia do Solo , Solo/química , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Carbono/química , Filtração , Água Doce/química , Água Subterrânea/química , Solubilidade , Águas Residuárias/química
2.
Sci Total Environ ; 544: 309-18, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26657377

RESUMO

This study investigated the redox dependent removal and adaptive behaviour of a mixture of 15 organic micropollutants (OMPs) in laboratory-scale soil columns fed with river water. Three separate pilot systems were used consisting of: (1) two columns, (2) ten columns and (3) twenty two columns to create oxic, suboxic (partial nitrate removal) and anoxic (complete nitrate removal). The pilot set-up has some unique features--it can simulate fairly long residence times (e.g., 45 days using the 22 column system) and reduced conditions developed naturally within the system. Dimethoate, diuron, and metoprolol showed redox dependent removal behaviour with higher biodegradation rates in the oxic zone compared to the suboxic/anoxic zone. The redox dependent behaviour of these three OMPs could not be explained based on their physico-chemical properties (hydrophobicity, charge and molecular weight) or functional groups present in the molecular structure. OMPs that showed persistent behaviour in the oxic zone (atrazine, carbamazepine, hydrochlorothiazide and simazine) were also not removed under more reduced conditions. Adaptive behaviour was observed for five OMPs: dimethoate, chloridazon, lincomycin, sulfamethoxazole and phenazone. However, the adaptive behaviour could not be explained by the physico-chemical properties (hydrophobicity, charge and molecular weight) investigated in this study and only rough trends were observed with specific functional groups (e.g. ethers, sulphur, primary and secondary amines). Finally, the adaptive behaviour of OMPs was found to be an important factor that should be incorporated in predictive models for OMP removal during river bank filtration.


Assuntos
Modelos Químicos , Rios/química , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Filtração , Oxirredução
3.
Sci Total Environ ; 536: 632-638, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26254065

RESUMO

This study investigated sorption and biodegradation behaviour of 20 organic micropollutants (OMPs) in lab-scale columns filled with two types of soil (fed with the same water quality) simulating river bank filtration (RBF) under oxic conditions. Retardation factors and OMP biodegradation rates were similar for the two soils that were characterised by a different cationic exchange capacity, organic matter and sand/silt/clay content. This result was supported by the microbial community composition (richness, evenness) of the two soils that became more similar as a result of feeding both columns with the same water quality. This indicates that microbial community composition and thereby OMP removal in soils is primarily determined by the composition of the aqueous phase (organic matter quantity and quality, nutrients) rather than the soil phase. These results indicate that different RBF sites located along the same river may show similar OMP removal (in case of similar water quality and residence time). CAPSULE: This study shows that the microbial community composition and thus OMP removal is primarily determined by the aqueous phase (water quality) rather than the soil phase.


Assuntos
Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Biodegradação Ambiental , Variação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...