Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Pathol ; 34(2): e13218, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37927164

RESUMO

Multiple sclerosis is a chronic autoimmune disease of the central nervous system characterized by myelin loss, axonal damage, and glial scar formation. Still, the underlying processes remain unclear, as numerous pathways and factors have been found to be involved in the development and progression of the disease. Therefore, it is of great importance to find suitable animal models as well as reliable methods for their precise and reproducible analysis. Here, we describe the impact of demyelination on clinically relevant gray matter regions of the hippocampus and cerebral cortex, using the previously established cuprizone model for aged mice. We could show that bioinformatic image analysis methods are not only suitable for quantification of cell populations, but also for the assessment of de- and remyelination processes, as numerous objective parameters can be considered for reproducible measurements. After cuprizone-induced demyelination, subsequent remyelination proceeded slowly and remained incomplete in all gray matter areas studied. There were regional differences in the number of mature oligodendrocytes during remyelination suggesting region-specific differences in the factors accounting for remyelination failure, as, even in the presence of oligodendrocytes, remyelination in the cortex was found to be impaired. Upon cuprizone administration, synaptic density and dendritic volume in the gray matter of aged mice decreased. The intensity of synaptophysin staining gradually restored during the subsequent remyelination phase, however the expression of MAP2 did not fully recover. Microgliosis persisted in the gray matter of aged animals throughout the remyelination period, whereas extensive astrogliosis was of short duration as compared to white matter structures. In conclusion, we demonstrate that the application of the cuprizone model in aged mice mimics the impaired regeneration ability seen in human pathogenesis more accurately than commonly used protocols with young mice and therefore provides an urgently needed animal model for the investigation of remyelination failure and remyelination-enhancing therapies.


Assuntos
Doenças Desmielinizantes , Remielinização , Humanos , Camundongos , Animais , Idoso , Cuprizona/toxicidade , Substância Cinzenta/patologia , Doenças Desmielinizantes/patologia , Remielinização/fisiologia , Córtex Cerebral/patologia , Oligodendroglia/patologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Bainha de Mielina/patologia
3.
Front Cell Neurosci ; 17: 1207540, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492129

RESUMO

Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system. Spontaneous restoration of myelin after demyelination occurs, but its efficiency declines during disease progression. Efficient myelin repair requires fine-tuning inflammatory responses by brain-resident microglia and infiltrating macrophages. Accordingly, promising therapeutic strategies aim at controlling inflammation to promote remyelination. Polysialic acid (polySia) is a polymeric glycan with variable chain lengths, presented as a posttranslational modification on select protein carriers. PolySia emerges as a negative regulator of inflammatory microglia and macrophage activation and has been detected on oligodendrocyte precursors and reactive astrocytes in multiple sclerosis lesions. As shown recently, polySia-modified proteins can also be released by activated microglia, and the intrinsically released protein-bound and exogenously applied free polySia were equally able to attenuate proinflammatory microglia activation via the inhibitory immune receptor Siglec-E. In this study, we explore polySia as a candidate substance for promoting myelin regeneration by immunomodulation. Lysophosphatidylcholine-induced demyelination of organotypic cerebellar slice cultures was used as an experimental model to analyze the impact of polySia with different degrees of polymerization (DP) on remyelination and inflammation. In lysophosphatidylcholine-treated cerebellar slice cultures, polySia-positive cells were abundant during demyelination but largely reduced during remyelination. Based on the determination of DP24 as the minimal polySia chain length required for the inhibition of inflammatory BV2 microglia activation, pools with short and long polySia chains (DP8-14 and DP24-30) were generated and applied to slice cultures during remyelination. Unlike DP8-14, treatment with DP24-30 significantly improved remyelination, increased arginase-1-positive microglia ratios, and reduced the production of nitric oxide in wildtype, but not in Siglec-E-deficient slice cultures. In vitro differentiation of oligodendrocytes was not affected by DP24-30. Collectively, these results suggest a beneficial effect of exogenously applied polySia DP24-30 on remyelination by Siglec-E-dependent microglia regulation.

4.
Glia ; 71(11): 2573-2590, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37455566

RESUMO

Demyelination in the central nervous system (CNS) is a hallmark of many neurodegenerative diseases such as multiple sclerosis (MS) and others. Here, we studied astrocytes during de- and remyelination in the cuprizone mouse model. To this end, we exploited the ribosomal tagging (RiboTag) technology that is based on Cre-mediated cell type-selective HA-tagging of ribosomes. Analyses were performed in the corpus callosum of GFAP-Cre+/- Rpl22HA/wt mice 5 weeks after cuprizone feeding, at the peak of demyelination, and 0.5 and 2 weeks after cuprizone withdrawal, when remyelination and tissue repair is initiated. After 5 weeks of cuprizone feeding, reactive astrocytes showed inflammatory signatures with enhanced expression of genes that modulate leukocyte migration (Tlr2, Cd86, Parp14) and they produced the chemokine CXCL10, as verified by histology. Furthermore, demyelination-induced reactive astrocytes expressed numerous ligands including Cx3cl1, Csf1, Il34, and Gas6 that act on homeostatic as well as activated microglia and thus potentially mediate activation and recruitment of microglia and enhancement of their phagocytotic activity. During early remyelination, HA-tagged cells displayed reduced inflammatory response signatures, as indicated by shutdown of CXCL10 production, and enhanced expression of osteopontin (SPP1) as well as of factors that are relevant for tissue remodeling (Timp1), regeneration and axonal repair. During late remyelination, the signatures shifted towards resolving inflammation by active suppression of lymphocyte activation and differentiation and support of glia cell differentiation. In conclusion, we detected highly dynamic astroglial transcriptomic signatures in the cuprizone model, which reflects excessive communication among glia cells and highlights different astrocyte functions during neurodegeneration and regeneration.


Assuntos
Cuprizona , Doenças Desmielinizantes , Camundongos , Animais , Cuprizona/toxicidade , Astrócitos/metabolismo , Doenças Desmielinizantes/patologia , Neuroglia/metabolismo , Corpo Caloso/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo
5.
Histochem Cell Biol ; 158(1): 15-38, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35380252

RESUMO

Myelin loss with consecutive axon degeneration and impaired remyelination are the underlying causes of progressive disease in patients with multiple sclerosis. Astrocytes are suggested to play a major role in these processes. The unmasking of distinct astrocyte identities in health and disease would help to understand the pathophysiological mechanisms in which astrocytes are involved. However, the number of specific astrocyte markers is limited. Therefore, we performed immunohistochemical studies and analyzed various markers including GFAP, vimentin, S100B, ALDH1L1, and LCN2 during de- and remyelination using the toxic murine cuprizone animal model. Applying this animal model, we were able to confirm overlapping expression of vimentin and GFAP and highlighted the potential of ALDH1L1 as a pan-astrocytic marker, in agreement with previous data. Only a small population of GFAP-positive astrocytes in the corpus callosum highly up-regulated LCN2 at the peak of demyelination and S100B expression was found in a subset of oligodendroglia as well, thus S100B turned out to have a limited use as a particular astroglial marker. Additionally, numerous GFAP-positive astrocytes in the lateral corpus callosum did not express S100B, further strengthening findings of heterogeneity in the astrocytic population. In conclusion, our results acknowledged that GFAP, vimentin, LCN2, and ALDH1L1 serve as reliable marker to identify activated astrocytes during cuprizone-induced de- and remyelination. Moreover, there were clear regional and temporal differences in protein and mRNA expression levels and patterns of the studied markers, generally between gray and white matter structures.


Assuntos
Doenças Desmielinizantes , Remielinização , Animais , Astrócitos , Biomarcadores/metabolismo , Corpo Caloso/metabolismo , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Remielinização/fisiologia , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...