Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(28): e2302756, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37532671

RESUMO

Natural materials are composed of a limited number of molecular building blocks and their exceptional properties are governed by their hierarchical structure. However, this level of precision is unattainable with current state-of-the-art materials for 3D printing. Herein, new self-assembled printable materials based on block copolymers (BCPs) enabling precise control of the nanostructure in 3D are presented. In particular, well-defined BCPs consisting of poly(styrene) (PS) and a polymethacrylate-based copolymer decorated with printable units are selected as suitable self-assembled materials and synthesized using controlled radical polymerization. The synthesized library of BCPs are utilized as printable formulations for the fabrication of complex 3D microstructures using two-photon laser printing. By fine-tuning the BCP composition and solvent in the formulations, the fabrication of precise 3D nano-ordered structures is demonstrated for the first time. A key point of this work is the achievement of controlled nano-order within the entire 3D structures. Thus, imaging of the cross-sections of the 3D printed samples is performed, enabling the visualization also from the inside. The presented versatile approach is expected to create new avenues for the precise design of functional polymer materials suitable for high-resolution 3D printing exhibiting tailor-made nanostructures.

2.
Chemistry ; 29(66): e202302116, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37577877

RESUMO

Porous organic cages (POCs) are meanwhile an established class of porous materials. Most of them are soluble to a certain extend and thus processable in or from solution. However, a few of larger salicylimine cages were reported to be insoluble in any organic solvents and thus characterized as amorphous materials. These cages were now synthesized as single-crystalline materials to get insight into packing motifs and preferred intermolecular interactions. Furthermore, the pairs of crystalline and amorphous materials for each cage allowed to compare their gas-sorption properties in both morphological states.

3.
Adv Mater ; 35(14): e2211074, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36639825

RESUMO

It is demonstrated that the postfunctionalization of solid polymeric microspheres can generate fully and throughout functionalized materials, contrary to the expectation that core-shell structures are generated. The full functionalization is illustrated on the example of photochemically generated microspheres, which are subsequently transformed into polyradical systems. Given the all-organic nature of the functionalized microspheres, characterization methods with high analytical sensitivity and spatial resolution are pioneered by directly visualizing the inner chemical distribution of the postfunctionalized microspheres based on characteristic electron energy loss signals in transmission electron microscopy (TEM). Specifically, ultrasonic ultramicrotomy is combined successfully with electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) during TEM. These findings open a key avenue for analyzing all-organic low-contrast soft-matter material structures, while the specifically investigated system concomitantly holds promise as an all-radical solid-state functional material.

4.
Cells ; 11(22)2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36429089

RESUMO

Clostridioides bacteria are responsible for life threatening infections. Here, we show that in addition to actin, the binary toxins CDT, C2I, and Iota from Clostridioides difficile, botulinum, and perfrigens, respectively, ADP-ribosylate the actin-related protein Arp2 of Arp2/3 complex and its additional components ArpC1, ArpC2, and ArpC4/5. The Arp2/3 complex is composed of seven subunits and stimulates the formation of branched actin filament networks. This activity is inhibited after ADP-ribosylation of Arp2. Translocation of the ADP-ribosyltransferase component of CDT toxin into human colon carcinoma Caco2 cells led to ADP-ribosylation of cellular Arp2 and actin followed by a collapse of the lamellipodial extensions and F-actin network. Exposure of isolated mouse colon pieces to CDT toxin induced the dissolution of the enterocytes leading to luminal aggregation of cellular debris and the collapse of the mucosal organization. Thus, we identify the Arp2/3 complex as hitherto unknown target of clostridial ADP-ribosyltransferases.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Toxinas Bacterianas , Animais , Camundongos , Humanos , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Clostridioides , Actinas/metabolismo , Toxinas Bacterianas/farmacologia , Toxinas Bacterianas/metabolismo , Células CACO-2 , ADP Ribose Transferases/farmacologia , ADP Ribose Transferases/metabolismo , ADP-Ribosilação , Difosfato de Adenosina/metabolismo
5.
Chem Sci ; 13(26): 7880-7885, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35865884

RESUMO

We report the electron-beam induced crosslinking of cinnamate-substituted polythiophene proceeding via excited state [2+2]-cycloaddition. Network formation in thin films is evidenced by infrared spectroscopy and film retention experiments. For the polymer studied herin, the electron-stimulated process appears to be superior to photo (UV)-induced crosslinking as it leads to less degradation. Electron beam lithography (EBL) patterns cinnamate-substituted polythiophene thin films on the nanoscale with a resolution of around 100 nm. As a proof of concept, we fabricated nanoscale organic transistors using doped and cross-linked P3ZT as contact fingers in thin film transistors.

6.
Adv Mater ; 34(31): e2202290, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35657163

RESUMO

Anthropogenic greenhouse gases contribute to global warming. Among those gases, perfluorocarbons (PFCs) are thousands to tens of thousands of times more harmful to the environment than comparable amounts of carbon dioxide. To date, materials that selectively adsorb perfluorocarbons in favor of other less harmful gases have not been reported. Here, a series of porous organic cage compounds with alkyl-, fluoroalkyl-, and partially fluorinated alkyl groups is presented. Their isomorphic crystalline states allow the study of the structure-property relationship between the degree of fluorination of the alkyl chains and the gas sorption properties for PFCs and their selective uptakes in comparison to other, nonfluorinated gases. By this approach, one compound having superior selectivities of PFCs versus N2 or CO2 under ambient conditions is identified.

7.
Int J Mol Sci ; 23(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35457283

RESUMO

Human wild type (wt) cardiac α-actin and its mutants p.A295S or p.R312H and p.E361G correlated with hypertrophic or dilated cardiomyopathy, respectively, were expressed by using the baculovirus/Sf21 insect cell system. The c-actin variants inhibited DNase I, indicating maintenance of their native state. Electron microscopy showed the formation of normal appearing actin filaments though they showed mutant specific differences in length and straightness correlating with their polymerization rates. TRITC-phalloidin staining showed that p.A295S and p.R312H exhibited reduced and the p.E361G mutant increased lengths of their formed filaments. Decoration of c-actins with cardiac tropomyosin (cTm) and troponin (cTn) conveyed Ca2+-sensitivity of the myosin-S1 ATPase stimulation, which was higher for the HCM p.A295S mutant and lower for the DCM p.R312H and p.E361G mutants than for wt c-actin. The lower Ca2+-sensitivity of myosin-S1 stimulation by both DCM actin mutants was corrected by the addition of levosimendan. Ca2+-dependency of the movement of pyrene-labeled cTm along polymerized c-actin variants decorated with cTn corresponded to the relations observed for the myosin-S1 ATPase stimulation though shifted to lower Ca2+-concentrations. The N-terminal C0C2 domain of cardiac myosin-binding protein-C increased the Ca2+-sensitivity of the pyrene-cTM movement of bovine, recombinant wt, p.A295S, and p.E361G c-actins, but not of the p.R312H mutant, suggesting decreased affinity to cTm.


Assuntos
Cardiomiopatia Dilatada , Cardiomiopatia Hipertrófica , Citoesqueleto de Actina/genética , Actinas/química , Actinas/genética , Animais , Cálcio , Cardiomiopatia Dilatada/genética , Cardiomiopatia Hipertrófica/genética , Bovinos , Humanos , Hipertrofia , Mutação , Miosinas , Tropomiosina/genética
8.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502534

RESUMO

Rare pediatric non-compaction and restrictive cardiomyopathy are usually associated with a rapid and severe disease progression. While the non-compaction phenotype is characterized by structural defects and is correlated with systolic dysfunction, the restrictive phenotype exhibits diastolic dysfunction. The molecular mechanisms are poorly understood. Target genes encode among others, the cardiac troponin subunits forming the main regulatory protein complex of the thin filament for muscle contraction. Here, we compare the molecular effects of two infantile de novo point mutations in TNNC1 (p.cTnC-G34S) and TNNI3 (p.cTnI-D127Y) leading to severe non-compaction and restrictive phenotypes, respectively. We used skinned cardiomyocytes, skinned fibers, and reconstituted thin filaments to measure the impact of the mutations on contractile function. We investigated the interaction of these troponin variants with actin and their inter-subunit interactions, as well as the structural integrity of reconstituted thin filaments. Both mutations exhibited similar functional and structural impairments, though the patients developed different phenotypes. Furthermore, the protein quality control system was affected, as shown for TnC-G34S using patient's myocardial tissue samples. The two troponin targeting agents levosimendan and green tea extract (-)-epigallocatechin-3-gallate (EGCg) stabilized the structural integrity of reconstituted thin filaments and ameliorated contractile function in vitro in some, but not all, aspects to a similar degree for both mutations.


Assuntos
Cardiomiopatias/genética , Mutação de Sentido Incorreto , Miofibrilas/metabolismo , Troponina I/genética , Adenosina Trifosfatases/metabolismo , Adulto , Cálcio/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Catequina/análogos & derivados , Catequina/farmacologia , Humanos , Lactente , Masculino , Microscopia Eletrônica de Transmissão , Miofibrilas/efeitos dos fármacos , Miofibrilas/ultraestrutura , Sarcômeros/efeitos dos fármacos , Sarcômeros/metabolismo , Índice de Gravidade de Doença , Simendana/farmacologia , Tropomiosina/metabolismo , Troponina I/metabolismo
9.
Nat Commun ; 12(1): 3967, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172734

RESUMO

Bottom-up and top-down approaches to synthetic biology each employ distinct methodologies with the common aim to harness living systems. Here, we realize a strategic merger of both approaches to convert light into proton gradients for the actuation of synthetic cellular systems. We genetically engineer E. coli to overexpress the light-driven inward-directed proton pump xenorhodopsin and encapsulate them in artificial cell-sized compartments. Exposing the compartments to light-dark cycles, we reversibly switch the pH by almost one pH unit and employ these pH gradients to trigger the attachment of DNA structures to the compartment periphery. For this purpose, a DNA triplex motif serves as a nanomechanical switch responding to the pH-trigger of the E. coli. When DNA origami plates are modified with the pH-sensitive triplex motif, the proton-pumping E. coli can trigger their attachment to giant unilamellar lipid vesicles (GUVs) upon illumination. A DNA cortex is formed upon DNA origami polymerization, which sculpts and deforms the GUVs. We foresee that the combination of bottom-up and top down approaches is an efficient way to engineer synthetic cells.


Assuntos
DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Genética/métodos , Prótons , DNA Bacteriano/química , Concentração de Íons de Hidrogênio , Luz , Microrganismos Geneticamente Modificados , Bombas de Próton/genética , Bombas de Próton/metabolismo , Rodopsina/genética , Rodopsina/metabolismo
10.
Nano Lett ; 21(8): 3690-3697, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33724848

RESUMO

The fabrication of electrically conductive hydrogels is challenging as the introduction of an electrically conductive filler often changes mechanical hydrogel matrix properties. Here, we present an approach for the preparation of hydrogel composites with outstanding electrical conductivity at extremely low filler loadings (0.34 S m-1, 0.16 vol %). Exfoliated graphene and polyacrylamide are microengineered to 3D composites such that conductive graphene pathways pervade the hydrogel matrix similar to an artificial nervous system. This makes it possible to combine both the exceptional conductivity of exfoliated graphene and the adaptable mechanical properties of polyacrylamide. The demonstrated approach is highly versatile regarding porosity, filler material, as well as hydrogel system. The important difference to other approaches is that we keep the original properties of the matrix, while ensuring conductivity through graphene-coated microchannels. This novel approach of generating conductive hydrogels is very promising, with particular applications in the fields of bioelectronics and biohybrid robotics.


Assuntos
Grafite , Hidrogéis , Condutividade Elétrica , Porosidade
11.
Adv Mater ; 33(11): e2008259, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33554349

RESUMO

Reversible hydrogen uptake and the metal/dielectric transition make the Mg/MgH2 system a prime candidate for solid-state hydrogen storage and dynamic plasmonics. However, high dehydrogenation temperatures and slow dehydrogenation hamper broad applicability. One promising strategy to improve dehydrogenation is the formation of metastable γ-MgH2 . A nanoparticle (NP) design, where γ-MgH2 forms intrinsically during hydrogenation is presented and a formation mechanism based on transmission electron microscopy results is proposed. Volume expansion during hydrogenation causes compressive stress within the confined, anisotropic NPs, leading to plastic deformation of ß-MgH2 via (301)ß twinning. It is proposed that these twins nucleate γ-MgH2 nanolamellas, which are stabilized by residual compressive stress. Understanding this mechanism is a crucial step toward cycle-stable, Mg-based dynamic plasmonic and hydrogen-storage materials with improved dehydrogenation. It is envisioned that a more general design of confined NPs utilizes the inherent volume expansion to reform γ-MgH2 during each rehydrogenation.

12.
Angew Chem Int Ed Engl ; 60(16): 8896-8904, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33476442

RESUMO

Chiral self-sorting is intricately connected to the complicated chiral processes observed in nature and no artificial systems of comparably complexity have been generated by chemists. However, only a few examples of purely organic molecules have been reported so far, where the self-sorting process could be controlled. Herein, we describe the chiral self-sorting of large cubic [8+12] salicylimine cage compounds based on a chiral TBTQ precursor. Out of 23 possible cage isomers only the enantiopure and a meso cage were observed to be formed, which have been unambiguously characterized by single crystal X-ray diffraction. Furthermore, by careful choice of solvent the formation of meso cage could be controlled. With internal diameters of din =3.3-3.5 nm these cages are among the largest organic cage compounds characterized and show very high specific surface areas up to approx. 1500 m2 g-1 after desolvation.

13.
Adv Mater ; 33(4): e2006061, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33306238

RESUMO

Despite their remarkable charge carrier mobility when forming well-ordered fibers, supramolecular transistors often suffer from poor processability that hinders device integration, resulting in disappointing transconductance and output currents. Here, a new class of supramolecular transistors, π-ion gel transistors (PIGTs), is presented. An in situ π-ion gel, which is an unprecedented composite of semiconducting nanofibers and an enclosed ionic liquid, is directly employed as an active material and internal capacitor. In comparison to other supramolecular transistors, a PIGT displays a high transconductance (133 µS) and output current (139 µA at -6 V), while retaining a high charge-carrier mobility (4.2 × 10-2 cm2 V-1 s-1 ) and on/off ratio (3.7 × 104 ). Importantly, the unique device configuration and the high ionic conductivity associated with the distinct nanosegregation enables the fastest response among accumulation-mode electrochemical-based transistors (<20 µs). Considering the advantages of the absence of dielectric layers and the facile fabrication process, PIGT has great potential to be utilized in printed flexible devices. The device platform is widely applicable to various supramolecular assemblies, shedding light on the interdisciplinary research of supramolecular chemistry and organic electronics.

14.
Adv Mater ; 32(32): e2002044, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32608038

RESUMO

A photoresist system for 3D two-photon microprinting is presented, which enables the printing of inherently nanoporous structures with mean pore sizes around 50 nm by means of self-organization on the nanoscale. A phase separation between polymerizable and chemically inert photoresist components leads to the formation of 3D co-continuous structures. Subsequent washing-out of the unpolymerized phase reveals the porous polymer structures. To characterize the volume properties of the printed structures, scanning electron microscopy images are recorded from ultramicrotome sections. In addition, the light-scattering properties of the 3D-printed material are analyzed. By adjusting the printing parameters, the porosity can be controlled during 3D printing. As an application example, a functioning miniaturized Ulbricht light-collection sphere is 3D printed and tested.

15.
Angew Chem Int Ed Engl ; 59(44): 19675-19679, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-32521080

RESUMO

Porous shape-persistent organic cages have become the object of interest in recent years because they are soluble and thus processable from solution. A variety of cages can be achieved by applying dynamic covalent chemistry (DCC), but they are less chemically stable. Here the transformation of a salicylimine cage into a quinoline cage by a twelve-fold Povarov reaction as the key step is described. Besides the chemical stability of the cage over a broad pH regime, it shows a unique absorption and emission depending on acid concentration. Furthermore, thin films for the vapor detection of acids were investigated, showing color switches from pale-yellow to red, and characteristic emission profiles.

16.
Adv Exp Med Biol ; 1239: 41-59, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32451855

RESUMO

After several decades studying different acto-myosin complexes at lower and intermediate resolution - limited by the electron microscope instrumentation available then - recent advances in imaging technology have been crucial for obtaining a number of excellent high-resolution 3D reconstructions from cryo electron microscopy. The resolution level reached now is about 3-4 Å, which allows unambiguous model building of filamentous actin on its own as well as that of actin filaments decorated with strongly bound myosin variants. The interface between actin and the myosin motor domain can now be described in detail, and the function of parts of the interface (such as, e.g., the cardiomyopathy loop) can be understood in a mechanistical way. Most recently, reconstructions of actin filaments decorated with different myosins, which show a strongly bound acto-myosin complex also in the presence of the nucleotide ADP, have become available. The comparison of these structures with the nucleotide-free Rigor state provide the first mechanistic description of force sensing. An open question is still the initial interaction of the motor domain of myosin with the actin filament. Such weakly interacting states have so far not been the subject of microscopical studies, even though high-resolution structures would be needed to shed light on the initial steps of phosphate release and power stroke initiation.


Assuntos
Actomiosina/química , Citoesqueleto de Actina , Actinas/química , Actomiosina/ultraestrutura , Microscopia Crioeletrônica , Miosinas/química
17.
Angew Chem Int Ed Engl ; 59(37): 16233-16240, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32472586

RESUMO

We report on the impact of the central heteroatom on structural, electronic, and spectroscopic properties of a series of spirofluorene-bridged heterotriangulenes and provide a detailed study on their aggregates. The in-depth analysis of their molecular structure by NMR spectroscopy and X-ray crystallography was further complemented by density functional theory calculations. With the aid of extensive photophysical analysis the complex fluorescence spectra were deconvoluted showing contributions from the peripheral fluorenes and the heteroaromatic cores. Beyond the molecular scale, we examined the aggregation behavior of these heterotriangulenes in THF/H2 O mixtures and analyzed the aggregates by static and dynamic light scattering. The excited-state interactions within the aggregates were found to be similar to those found in the solid state. A plethora of morphologies and superstructures were observed by scanning electron microscopy of drop-casted dispersions.

18.
Chemistry ; 26(19): 4169, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32237112

RESUMO

Invited for the cover of this issue are Lutz H. Gade, Claudia Backes, and co-workers at Heidelberg University. The image depicts 2-(1,2,2-triarylvinyl)-pyridines, which are luminogens for aggregation-induced emission which "light up" upon irradiation. Read the full text of the article at 10.1002/chem.201905611.

19.
PLoS One ; 15(3): e0229227, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32182250

RESUMO

TNNI3 encoding cTnI, the inhibitory subunit of the troponin complex, is the main target for mutations leading to restrictive cardiomyopathy (RCM). Here we investigate two cTnI-R170G/W amino acid replacements, identified in infantile RCM patients, which are located in the regulatory C-terminus of cTnI. The C-terminus is thought to modulate the function of the inhibitory region of cTnI. Both cTnI-R170G/W strongly enhanced the Ca2+-sensitivity of skinned fibres, as is typical for RCM-mutations. Both mutants strongly enhanced the affinity of troponin (cTn) to tropomyosin compared to wildtype cTn, whereas binding to actin was either strengthened (R170G) or weakened (R170W). Furthermore, the stability of reconstituted thin filaments was reduced as revealed by electron microscopy. Filaments containing R170G/W appeared wavy and showed breaks. Decoration of filaments with myosin subfragment S1 was normal in the presence of R170W, but was irregular with R170G. Surprisingly, both mutants did not affect the Ca2+-dependent activation of reconstituted cardiac thin filaments. In the presence of the N-terminal fragment of cardiac myosin binding protein C (cMyBPC-C0C2) cooperativity of thin filament activation was increased only when the filaments contained wildtype cTn. No effect was observed in the presence of cTn containing R170G/W. cMyBPC-C0C2 significantly reduced binding of wildtype troponin to actin/tropomyosin, but not of both mutant cTn. Moreover, we found a direct troponin/cMyBPC-C0C2 interaction using microscale thermophoresis and identified cTnI and cTnT, but not cTnC as binding partners for cMyBPC-C0C2. Only cTn containing cTnI-R170G showed a reduced affinity towards cMyBPC-C0C2. Our results suggest that the RCM cTnI variants R170G/W impair the communication between thin and thick filament proteins and destabilize thin filaments.


Assuntos
Substituição de Aminoácidos , Cardiomiopatia Restritiva/genética , Miocárdio/metabolismo , Sarcômeros/metabolismo , Troponina I/genética , Actinas/metabolismo , Animais , Cálcio/metabolismo , Cardiomiopatia Restritiva/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Pré-Escolar , Cobaias , Humanos , Microscopia Eletrônica , Modelos Biológicos , Ligação Proteica , Tropomiosina/metabolismo
20.
Adv Mater ; 32(12): e1908258, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32068919

RESUMO

Future lightweight, flexible, and wearable electronics will employ visible-light-communication schemes to interact within indoor environments. Organic photodiodes are particularly well suited for such technologies as they enable chemically tailored optoelectronic performance and fabrication by printing techniques on thin and flexible substrates. However, previous methods have failed to address versatile functionality regarding wavelength selectivity without increasing fabrication complexity. This work introduces a general solution for printing wavelength-selective bulk-heterojunction photodetectors through engineering of the ink formulation. Nonfullerene acceptors are incorporated in a transparent polymer donor matrix to narrow and tune the response in the visible range without optical filters or light-management techniques. This approach effectively decouples the optical response from the viscoelastic ink properties, simplifying process development. A thorough morphological and spectroscopic investigation finds excellent charge-carrier dynamics enabling state-of-the-art responsivities >102 mA W-1 and cutoff frequencies >1.5 MHz. Finally, the color selectivity and high performance are demonstrated in a filterless visible-light-communication system capable of demultiplexing intermixed optical signals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...