Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2790: 133-148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38649570

RESUMO

This chapter compares two different techniques for monitoring photosynthetic O2 production; the wide-spread Clark-type O2 electrode and the more sophisticated membrane inlet mass spectrometry (MIMS) technique. We describe how a simple membrane inlet for MIMS can be made out of a commercial Clark-type cell and outline the advantages and drawbacks of the two techniques to guide researchers in deciding which method to use. Protocols and examples are given for measuring O2 evolution rates and for determining the number of chlorophyll molecules per active photosystem II reaction center.


Assuntos
Espectrometria de Massas , Oxigênio , Fotossíntese , Complexo de Proteína do Fotossistema II , Oxigênio/metabolismo , Espectrometria de Massas/métodos , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila/metabolismo , Eletrodos
2.
J Bioenerg Biomembr ; 54(5-6): 273-281, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36229623

RESUMO

Salinibacter ruber is an extremophilic bacterium able to grow in high-salts environments, such as saltern crystallizer ponds. This halophilic bacterium is red-pigmented due to the production of several carotenoids and their derivatives. Two of these pigment molecules, salinixanthin and retinal, are reported to be essential cofactors of the xanthorhodopsin, a light-driven proton pump unique to this bacterium. Here, we isolate and characterize an outer membrane porin-like protein that retains salinixanthin. The characterization by mass spectrometry identified an unknown protein whose structure, predicted by AlphaFold, consists of a 8 strands beta-barrel transmembrane organization typical of porins. The protein is found to be part of a functional network clearly involved in the outer membrane trafficking. Cryo-EM micrographs showed the shape and dimensions of a particle comparable with the ones of the predicted structure. Functional implications, with respect to the high representativity of this protein in the outer membrane fraction, are discussed considering its possible role in primary functions such as the nutrients uptake and the homeostatic balance. Finally, also a possible involvement in balancing the charge perturbation associated with the xanthorhodopsin and ATP synthase activities is considered.


Assuntos
Bacteroidetes , Porinas , Porinas/metabolismo , Bacteroidetes/química , Bacteroidetes/metabolismo , Carotenoides/química , Carotenoides/metabolismo
3.
Bio Protoc ; 11(17): e4144, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34604449

RESUMO

Photosynthesis is the main process by which sunlight is harvested and converted into chemical energy and has been a focal point of fundamental research in plant biology for decades. In higher plants, the process takes place in the thylakoid membranes where the two photosystems (PSI and PSII) are located. In the past few decades, the evolution of biophysical and biochemical techniques allowed detailed studies of the thylakoid organization and the interaction between protein complexes and cofactors. These studies have mainly focused on model plants, such as Arabidopsis, pea, spinach, and tobacco, which are grown in climate chambers even though significant differences between indoor and outdoor growth conditions are present. In this manuscript, we present a new mild-solubilization procedure for use with "fragile" samples such as thylakoids from conifers growing outdoors. Here, the solubilization protocol is optimized with two detergents in two species, namely Norway spruce (Picea abies) and Scots pine (Pinus sylvestris). We have optimized the isolation and characterization of PSI and PSII multimeric mega- and super-complexes in a close-to-native condition by Blue-Native gel electrophoresis. Eventually, our protocol will not only help in the characterization of photosynthetic complexes from conifers but also in understanding winter adaptation.

5.
Sci Rep ; 11(1): 15534, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330992

RESUMO

In higher plants, the photosynthetic process is performed and regulated by Photosystem II (PSII). Arabidopsis thaliana was the first higher plant with a fully sequenced genome, conferring it the status of a model organism; nonetheless, a high-resolution structure of its Photosystem II is missing. We present the first Cryo-EM high-resolution structure of Arabidopsis PSII supercomplex with average resolution of 2.79 Å, an important model for future PSII studies. The digitonin extracted PSII complexes demonstrate the importance of: the LHG2630-lipid-headgroup in the trimerization of the light-harvesting complex II; the stabilization of the PsbJ subunit and the CP43-loop E by DGD520-lipid; the choice of detergent for the integrity of membrane protein complexes. Furthermore, our data shows at the anticipated Mn4CaO5-site a single metal ion density as a reminiscent early stage of Photosystem II photoactivation.


Assuntos
Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Arabidopsis/ultraestrutura , Microscopia Crioeletrônica , Digitonina/metabolismo
6.
Plant Physiol ; 179(4): 1739-1753, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30538167

RESUMO

Photosystem II (PSII) is a supramolecular complex containing over 30 protein subunits and a large set of cofactors, including various pigments and quinones as well as Mn, Ca, Cl, and Fe ions. Eukaryotic PSII complexes contain many subunits not found in their bacterial counterparts, including the proteins PsbP (PSII), PsbQ, PsbS, and PsbW, as well as the highly homologous, low-molecular-mass subunits PsbTn1 and PsbTn2 whose function is currently unknown. To determine the function of PsbTn1 and PsbTn2, we generated single and double psbTn1 and psbTn2 knockout mutants in Arabidopsis (Arabidopsis thaliana). Cross linking and reciprocal coimmunoprecipitation experiments revealed that PsbTn is a lumenal PSII protein situated next to the cytochrome b 559 subunit PsbE. The removal of the PsbTn proteins decreased the oxygen evolution rate and PSII core phosphorylation level but increased the susceptibility of PSII to photoinhibition and the production of reactive oxygen species. The assembly and stability of PSII were unaffected, indicating that the deficiencies of the psbTn1 psbTn2 double mutants are due to structural changes. Double mutants exhibited a higher rate of nonphotochemical quenching of excited states than the wild type and single mutants, as well as slower state transition kinetics and a lower quantum yield of PSII when grown in the field. Based on these results, we propose that the main function of the PsbTn proteins is to enable PSII to acclimate to light shifts or intense illumination.


Assuntos
Aclimatação , Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Aclimatação/genética , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Luz , Estresse Oxidativo , Fosforilação , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/fisiologia , Espécies Reativas de Oxigênio/metabolismo
7.
Methods Mol Biol ; 1770: 197-211, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29978403

RESUMO

This chapter compares two different techniques for monitoring photosynthetic O2 production: the widespread Clark-type O2 electrode and the more sophisticated membrane inlet mass spectrometry (MIMS) technique. We describe how a simple membrane inlet for MIMS can be made out of a commercial Clark-type cell, and outline the advantages and drawbacks of the two techniques to guide researchers in deciding which method to use. Protocols and examples are given for measuring O2 evolution rates and for determining the number of chlorophyll molecules per active photosystem II reaction center.


Assuntos
Bioensaio/métodos , Oxigênio/metabolismo , Fotossíntese , Bioensaio/instrumentação , Eletrodos , Desenho de Equipamento , Espectrometria de Massas/métodos , Fenômenos Fisiológicos Vegetais , Água
8.
Sci Rep ; 8(1): 8658, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29855503

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

9.
Plant Physiol ; 176(2): 1199-1214, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28626007

RESUMO

Chloroplasts develop from undifferentiated proplastids present in meristematic tissue. Thus, chloroplast biogenesis is closely connected to leaf development, which restricts our ability to study the process of chloroplast biogenesis per se. As a consequence, we know relatively little about the regulatory mechanisms behind the establishment of the photosynthetic reactions and how the activities of the two genomes involved are coordinated during chloroplast development. We developed a single cell-based experimental system from Arabidopsis (Arabidopsis thaliana) with high temporal resolution allowing for investigations of the transition from proplastids to functional chloroplasts. Using this unique cell line, we could show that the establishment of photosynthesis is dependent on a regulatory mechanism involving two distinct phases. The first phase is triggered by rapid light-induced changes in gene expression and the metabolome. The second phase is dependent on the activation of the chloroplast and generates massive changes in the nuclear gene expression required for the transition to photosynthetically functional chloroplasts. The second phase also is associated with a spatial transition of the chloroplasts from clusters around the nucleus to the final position at the cell cortex. Thus, the establishment of photosynthesis is a two-phase process with a clear checkpoint associated with the second regulatory phase allowing coordination of the activities of the nuclear and plastid genomes.


Assuntos
Arabidopsis/citologia , Cloroplastos/fisiologia , Fotossíntese , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Linhagem Celular , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas , Luz , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Células Vegetais , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plastídeos/metabolismo , Zea mays/citologia
10.
Sci Rep ; 7(1): 17151, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215017

RESUMO

Peroxiredoxins (Prxs) are vital regulators of intracellular reactive oxygen species levels in all living organisms. Their activity depends on one or two catalytically active cysteine residues, the peroxidatic Cys (CP) and, if present, the resolving Cys (CR). A detailed catalytic cycle has been derived for typical 2-Cys Prxs, however, little is known about the catalytic cycle of 1-Cys Prxs. We have characterized Prx6 from the cyanobacterium Anabaena sp. strain PCC7120 (AnPrx6) and found that in addition to the expected peroxidase activity, AnPrx6 can act as a molecular chaperone in its dimeric state, contrary to other Prxs. The AnPrx6 crystal structure at 2.3 Å resolution reveals different active site conformations in each monomer of the asymmetric obligate homo-dimer. Molecular dynamic simulations support the observed structural plasticity. A FSH motif, conserved in 1-Cys Prxs, precedes the active site PxxxTxxCp signature and might contribute to the 1-Cys Prx reaction cycle.


Assuntos
Anabaena/metabolismo , Chaperonas Moleculares/metabolismo , Peroxirredoxina VI/química , Peroxirredoxina VI/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Cinética , Modelos Moleculares , Chaperonas Moleculares/química , Oxirredução , Conformação Proteica , Multimerização Proteica
11.
Biochim Biophys Acta ; 1857(9): 1524-1533, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27220875

RESUMO

Photosystem II is a protein complex embedded in the thylakoid membrane of photosynthetic organisms and performs the light driven water oxidation into electrons and molecular oxygen that initiate the photosynthetic process. This important complex is composed of more than two dozen of intrinsic and peripheral subunits, of those half are low molecular mass proteins. PsbY is one of those low molecular mass proteins; this 4.7-4.9kDa intrinsic protein seems not to bind any cofactors. Based on structural data from cyanobacterial and red algal Photosystem II PsbY is located closely or in direct contact with cytochrome b559. Cytb559 consists of two protein subunits (PsbE and PsbF) ligating a heme-group in-between them. While the exact function of this component in Photosystem II has not yet been clarified, a crucial role for assembly and photo-protection in prokaryotic complexes has been suggested. One unique feature of Cytb559 is its redox-heterogeneity, forming high, medium and low potential, however, neither origin nor mechanism are known. To reveal the function of PsbY within Photosystem II of Arabidopsis we have analysed PsbY knock-out plants and compared them to wild type and to complemented mutant lines. We show that in the absence of PsbY protein Cytb559 is only present in its oxidized, low potential form and plants depleted of PsbY were found to be more susceptible to photoinhibition.


Assuntos
Proteínas de Arabidopsis/fisiologia , Grupo dos Citocromos b/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Ureo-Hidrolases/fisiologia , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Dosimetria Termoluminescente
12.
Biochim Biophys Acta ; 1857(9): 1479-1489, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27154055

RESUMO

Macro-organisation of the protein complexes in plant thylakoid membranes plays important roles in the regulation and fine-tuning of photosynthetic activity. These delicate structures might, however, undergo substantial changes during isolating the thylakoid membranes or during sample preparations, e.g., for electron microscopy. Circular-dichroism (CD) spectroscopy is a non-invasive technique which can thus be used on intact samples. Via excitonic and psi-type CD bands, respectively, it carries information on short-range excitonic pigment-pigment interactions and the macro-organisation (chiral macrodomains) of pigment-protein complexes (psi, polymer or salt-induced). In order to obtain more specific information on the origin of the major psi-type CD bands, at around (+)506, (-)674 and (+)690nm, we fingerprinted detached leaves and isolated thylakoid membranes of wild-type and mutant plants and also tested the effects of different environmental conditions in vivo. We show that (i) the chiral macrodomains disassemble upon mild detergent treatments, but not after crosslinking the protein complexes; (ii) in different wild-type leaves of dicotyledonous and monocotyledonous angiosperms the CD features are quite robust, displaying very similar excitonic and psi-type bands, suggesting similar protein composition and (macro-) organisation of photosystem II (PSII) supercomplexes in the grana; (iii) the main positive psi-type bands depend on light-harvesting protein II contents of the membranes; (iv) the (+)506nm band appears only in the presence of PSII-LHCII supercomplexes and does not depend on the xanthophyll composition of the membranes. Hence, CD spectroscopy can be used to detect different macro-domains in the thylakoid membranes with different outer antenna compositions in vivo.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II/química , Tilacoides/química , Cloroplastos/ultraestrutura , Dicroísmo Circular , Folhas de Planta/química , Xantofilas/química
13.
Front Plant Sci ; 7: 423, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27092151

RESUMO

Assembly of Photosystem (PS) II in plants has turned out to be a highly complex process which, at least in part, occurs in a sequential order and requires many more auxiliary proteins than subunits present in the complex. Owing to the high evolutionary conservation of the subunit composition and the three-dimensional structure of the PSII complex, most plant factors involved in the biogenesis of PSII originated from cyanobacteria and only rarely evolved de novo. Furthermore, in chloroplasts the initial assembly steps occur in the non-appressed stroma lamellae, whereas the final assembly including the attachment of the major LHCII antenna proteins takes place in the grana regions. The stroma lamellae are also the place where part of PSII repair occurs, which very likely also involves assembly factors. In cyanobacteria initial PSII assembly also occurs in the thylakoid membrane, in so-called thylakoid centers, which are in contact with the plasma membrane. Here, we provide an update on the structures, localisations, topologies, functions, expression and interactions of the low molecular mass PSII subunits PsbY, PsbW and the auxiliary factors HCF136, PsbN, TerC and ALB3, assisting in PSII complex assembly and protein insertion into the thylakoid membrane.

14.
Physiol Plant ; 156(1): 3-12, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26337850

RESUMO

Robust and reproducible methods for extracting thylakoid membranes are required for the analysis of photosynthetic processes in higher plants such as Arabidopsis. Here, we compare three methods for thylakoid extraction using two different buffers. Method I involves homogenizing the plant material with a metal/glass blender; method II involves manually grinding the plant material in ice-cold grinding buffer with a mortar and method III entails snap-freezing followed by manual grinding with a mortar, after which the frozen powder is thawed in isolation buffer. Thylakoid membrane samples extracted using each method were analyzed with respect to protein and chlorophyll content, yields relative to starting material, oxygen-evolving activity, protein complex content and phosphorylation. We also examined how the use of fresh and frozen thylakoid material affected the extracts' contents of protein complexes. The use of different extraction buffers did not significantly alter the protein content of the extracts in any case. Method I yielded thylakoid membranes with the highest purity and oxygen-evolving activity. Method III used low amounts of starting material and was capable of capturing rapid phosphorylation changes in the sample at the cost of higher levels of contamination. Method II yielded thylakoid membrane extracts with properties intermediate between those obtained with the other two methods. Finally, frozen and freshly isolated thylakoid membranes performed identically in blue native-polyacrylamide gel electrophoresis experiments conducted in order to separate multimeric protein supracomplexes.


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Arabidopsis/metabolismo , Proteínas das Membranas dos Tilacoides/isolamento & purificação , Tilacoides/metabolismo , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Eletroforese em Gel de Poliacrilamida , Fosforilação , Proteínas das Membranas dos Tilacoides/análise , Proteínas das Membranas dos Tilacoides/metabolismo
15.
Front Plant Sci ; 6: 884, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26539202

RESUMO

Woody plants in boreal to arctic environments and high mountains survive prolonged exposure to temperatures below -40°C and minimum temperatures below -60°C, and laboratory tests show that many of these species can also survive immersion in liquid nitrogen at -196°C. Studies of biochemical changes that occur during acclimation, including recent proteomic and metabolomic studies, have identified changes in carbohydrate and compatible solute concentrations, membrane lipid composition, and proteins, notably dehydrins, that may have important roles in survival at extreme low temperature (ELT). Consideration of the biophysical mechanisms of membrane stress and strain lead to the following hypotheses for cellular and molecular mechanisms of survival at ELT: (1) Changes in lipid composition stabilize membranes at temperatures above the lipid phase transition temperature (-20 to -30°C), preventing phase changes that result in irreversible injury. (2) High concentrations of oligosaccharides promote vitrification or high viscosity in the cytoplasm in freeze-dehydrated cells, which would prevent deleterious interactions between membranes. (3) Dehydrins bind membranes and further promote vitrification or act stearically to prevent membrane-membrane interactions.

16.
J Exp Bot ; 66(20): 6461-70, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26254328

RESUMO

Plants and algae have developed various regulatory mechanisms for optimal delivery of excitation energy to the photosystems even during fluctuating light conditions; these include state transitions as well as non-photochemical quenching. The former process maintains the balance by redistributing antennae excitation between the photosystems, meanwhile the latter by dissipating excessive excitation inside the antennae. In the present study, these mechanisms have been analysed in the cryptophyte alga Guillardia theta. Photoprotective non-photochemical quenching was observed in cultures only after they had entered the stationary growth phase. These cells displayed a diminished overall photosynthetic efficiency, measured as CO2 assimilation rate and electron transport rate. However, in the logarithmic growth phase G. theta cells redistributed excitation energy via a mechanism similar to state transitions. These state transitions were triggered by blue light absorbed by the membrane integrated chlorophyll a/c antennae, and green light absorbed by the lumenal biliproteins was ineffective. It is proposed that state transitions in G. theta are induced by small re-arrangements of the intrinsic antennae proteins, resulting in their coupling/uncoupling to the photosystems in state 1 or state 2, respectively. G. theta therefore represents a chromalveolate algae able to perform state transitions.


Assuntos
Dióxido de Carbono/metabolismo , Criptófitas/fisiologia , Transporte de Elétrons , Processos Fotoquímicos , Criptófitas/crescimento & desenvolvimento , Luz , Fotossíntese
17.
J Exp Bot ; 66(7): 2067-77, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25740923

RESUMO

The Executer1 and Executer2 proteins have a fundamental role in the signalling pathway mediated by singlet oxygen in chloroplast; nonetheless, not much is known yet about their specific activity and features. Herein, we have followed a differential-expression proteomics approach to analyse the impact of Executer on the soluble chloroplast protein abundance in Arabidopsis. Because singlet oxygen plays a significant role in signalling the oxidative response of plants to light, our analysis also included the soluble chloroplast proteome of plants exposed to a moderate light intensity in the time frame of hours. A number of light- and genotype-responsive proteins were detected, and mass-spectrometry identification showed changes in abundance of several photosynthesis- and carbon metabolism-related proteins as well as proteins involved in plastid mRNA processing. Our results support the participation of the Executer proteins in signalling and control of chloroplast metabolism, and in the regulation of plant response to environmental changes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteoma , Transdução de Sinais , Aclimatação , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Luz , Fotossíntese , Proteômica , Oxigênio Singlete/metabolismo , Estresse Fisiológico
18.
New Phytol ; 204(3): 545-555, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25139797

RESUMO

Siberian spruce (Picea obovata) is one of several boreal conifer species that can survive at extremely low temperatures (ELTs). When fully acclimated, its tissues can survive immersion in liquid nitrogen. Relatively little is known about the biochemical and biophysical strategies of ELT survival. We profiled needle metabolites using gas chromatography coupled with mass spectrometry (GC-MS) to explore the metabolic changes that occur during cold acclimation caused by natural temperature fluctuations. In total, 223 metabolites accumulated and 52 were depleted in fully acclimated needles compared with pre-acclimation needles. The metabolite profiles were found to develop in four distinct phases, which are referred to as pre-acclimation, early acclimation, late acclimation and fully acclimated. Metabolite changes associated with carbohydrate and lipid metabolism were observed, including changes associated with increased raffinose family oligosaccharide synthesis and accumulation, accumulation of sugar acids and sugar alcohols, desaturation of fatty acids, and accumulation of digalactosylglycerol. We also observed the accumulation of protein and nonprotein amino acids and polyamines that may act as compatible solutes or cryoprotectants. These results provide new insight into the mechanisms of freezing tolerance development at the metabolite level and highlight their importance in rapid acclimation to ELT in P. obovata.


Assuntos
Aclimatação , Congelamento , Regulação da Expressão Gênica de Plantas/fisiologia , Picea/metabolismo , Eletrólitos , Metabolômica , Picea/genética , Folhas de Planta/metabolismo , Estações do Ano
19.
Plant Cell ; 26(3): 1183-99, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24619613

RESUMO

The chloroplast-encoded low molecular weight protein PsbN is annotated as a photosystem II (PSII) subunit. To elucidate the localization and function of PsbN, encoded on the opposite strand to the psbB gene cluster, we raised antibodies and inserted a resistance cassette into PsbN in both directions. Both homoplastomic tobacco (Nicotiana tabacum) mutants psbN-F and psbN-R show essentially the same PSII deficiencies. The mutants are extremely light sensitive and failed to recover from photoinhibition. Although synthesis of PSII proteins was not altered significantly, both mutants accumulated only ∼25% of PSII proteins compared with the wild type. Assembly of PSII precomplexes occurred at normal rates, but heterodimeric PSII reaction centers (RCs) and higher order PSII assemblies were not formed efficiently in the mutants. The psbN-R mutant was complemented by allotopic expression of the PsbN gene fused to the sequence of a chloroplast transit peptide in the nuclear genome. PsbN represents a bitopic trans-membrane peptide localized in stroma lamellae with its highly conserved C terminus exposed to the stroma. Significant amounts of PsbN were already present in dark-grown seedling. Our data prove that PsbN is not a constituent subunit of PSII but is required for repair from photoinhibition and efficient assembly of the PSII RC.


Assuntos
Nicotiana/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Luz , Mutação , Óperon , Nicotiana/genética , Transcrição Gênica
20.
Biochem J ; 457(2): 335-46, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24156403

RESUMO

MMPs (matrix metalloproteases) are a family of zinc-dependent endopeptidases widely distributed throughout all kingdoms of life. In mammals, MMPs play key roles in many physiological and pathological processes, including remodelling of the extracellular matrix. In the genome of the annual plant Arabidopsis thaliana, five MMP-like proteins (At-MMPs) are encoded, but their function is unknown. Previous work on these enzymes was limited to gene expression analysis, and so far proteolytic activity has been shown only for At1-MMP. We expressed and purified the catalytic domains of all five At-MMPs as His-tagged proteins in Escherichia coli cells to delineate the biochemical differences and similarities among the Arabidopsis MMP family members. We demonstrate that all five recombinant At-MMPs are active proteases with distinct preferences for different protease substrates. Furthermore, we performed a family-wide characterization of their biochemical properties and highlight similarities and differences in their cleavage site specificities as well as pH- and temperature-dependent activities. Detailed analysis of their sequence specificity using PICS (proteomic identification of protease cleavage sites) revealed profiles similar to human MMPs with the exception of At5-MMP; homology models of the At-MMP catalytic domains supported these results. Our results suggest that each At-MMP may be involved in different proteolytic processes during plant growth and development.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/genética , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Domínio Catalítico/genética , Bovinos , Humanos , Dados de Sequência Molecular , Extratos Vegetais/genética , Extratos Vegetais/metabolismo , Folhas de Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...