Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 210(11): 1804-1814, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37074207

RESUMO

Somatic hypermutation (SHM) is necessary for Ab diversification and involves error-prone DNA repair of activation-induced cytidine deaminase-induced lesions in germinal center (GC) B cells but can also cause genomic instability. GC B cells express low levels of the DNA repair protein apurinic/apyrimidinic (AP) endonuclease (APE)1 and high levels of its homolog APE2. Reduced SHM in APE2-deficient mice suggests that APE2 promotes SHM, but these GC B cells also exhibit reduced proliferation that could impact mutation frequency. In this study, we test the hypothesis that APE2 promotes and APE1 suppresses SHM. We show how APE1/APE2 expression changes in primary murine spleen B cells during activation, impacting both SHM and class-switch recombination (CSR). High levels of both APE1 and APE2 early after activation promote CSR. However, after 2 d, APE1 levels decrease steadily with each cell division, even with repeated stimulation, whereas APE2 levels increase with each stimulation. When GC-level APE1/APE2 expression was engineered by reducing APE1 genetically (apex1+/-) and overexpressing APE2, bona fide activation-induced cytidine deaminase-dependent VDJH4 intron SHM became detectable in primary B cell cultures. The C terminus of APE2 that interacts with proliferating cell nuclear Ag promotes SHM and CSR, although its ATR-Chk1-interacting Zf-GRF domain is not required. However, APE2 does not increase mutations unless APE1 is reduced. Although APE1 promotes CSR, it suppresses SHM, suggesting that downregulation of APE1 in the GC is required for SHM. Genome-wide expression data compare GC and cultured B cells and new models depict how APE1 and APE2 expression and protein interactions change during B cell activation and affect the balance between accurate and error-prone repair during CSR and SHM.


Assuntos
Linfócitos B , Reparo do DNA , Animais , Camundongos , Linfócitos B/metabolismo , Técnicas de Cultura de Células , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Switching de Imunoglobulina/genética , Mutação , Hipermutação Somática de Imunoglobulina
2.
J Immunol ; 197(7): 2918-29, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27559048

RESUMO

The recombination activating gene (RAG) 1 and RAG2 protein complex introduces DNA breaks at Tcr and Ig gene segments that are required for V(D)J recombination in developing lymphocytes. Proper regulation of RAG1/2 expression safeguards the ordered assembly of Ag receptors and the development of lymphocytes, while minimizing the risk for collateral damage. The ataxia telangiectasia mutated (ATM) kinase is involved in the repair of RAG1/2-mediated DNA breaks and prevents their propagation. The simultaneous occurrence of RAG1/2-dependent and -independent DNA breaks in developing lymphocytes exposed to genotoxic stress increases the risk for aberrant recombinations. In this study, we assessed the effect of genotoxic stress on RAG1/2 expression in pre-B cells and show that activation of the DNA damage response resulted in the rapid ATM-dependent downregulation of RAG1/2 mRNA and protein expression. We show that DNA damage led to the loss of FOXO1 binding to the enhancer region of the RAG1/2 locus (Erag) and provoked FOXO1 cleavage. We also show that DNA damage caused by RAG1/2 activity in pre-B cells was able to downmodulate RAG1/2 expression and activity, confirming the existence of a negative feedback regulatory mechanism. Our data suggest that pre-B cells are endowed with a protective mechanism that reduces the risk for aberrant recombinations and chromosomal translocations when exposed to DNA damage, involving the ATM-dependent regulation of FOXO1 binding to the Erag enhancer region.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteína Forkhead Box O1/metabolismo , Proteínas de Homeodomínio/genética , Proteínas Nucleares/genética , Células Precursoras de Linfócitos B/metabolismo , Transdução de Sinais , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas Nucleares/metabolismo
3.
PLoS One ; 10(8): e0134397, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26267846

RESUMO

Activation-induced cytidine deaminase (AID) is essential for class switch recombination (CSR) and somatic hypermutation (SHM) of Ig genes. The C terminus of AID is required for CSR but not for SHM, but the reason for this is not entirely clear. By retroviral transduction of mutant AID proteins into aid-/- mouse splenic B cells, we show that 4 amino acids within the C terminus of mouse AID, when individually mutated to specific amino acids (R190K, A192K, L196S, F198S), reduce CSR about as much or more than deletion of the entire C terminal 10 amino acids. Similar to ΔAID, the substitutions reduce binding of UNG to Ig Sµ regions and some reduce binding of Msh2, both of which are important for introducing S region DNA breaks. Junctions between the IgH donor switch (S)µ and acceptor Sα regions from cells expressing ΔAID or the L196S mutant show increased microhomology compared to junctions in cells expressing wild-type AID, consistent with problems during CSR and the use of alternative end-joining, rather than non-homologous end-joining (NHEJ). Unlike deletion of the AID C terminus, 3 of the substitution mutants reduce DNA double-strand breaks (DSBs) detected within the Sµ region in splenic B cells undergoing CSR. Cells expressing these 3 substitution mutants also have greatly reduced mutations within unrearranged Sµ regions, and they decrease with time after activation. These results might be explained by increased error-free repair, but as the C terminus has been shown to be important for recruitment of NHEJ proteins, this appears unlikely. We hypothesize that Sµ DNA breaks in cells expressing these C terminus substitution mutants are poorly repaired, resulting in destruction of Sµ segments that are deaminated by these mutants. This could explain why these mutants cannot undergo CSR.


Assuntos
Citidina Desaminase/genética , Switching de Imunoglobulina/genética , Região de Troca de Imunoglobulinas/genética , Imunoglobulinas/genética , Recombinação Genética , Substituição de Aminoácidos/genética , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Citidina Desaminase/imunologia , DNA/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Humanos , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto
4.
PLoS Genet ; 11(8): e1005438, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26263206

RESUMO

Activation-induced cytidine deaminase (AID) is required for initiation of Ig class switch recombination (CSR) and somatic hypermutation (SHM) of antibody genes during immune responses. AID has also been shown to induce chromosomal translocations, mutations, and DNA double-strand breaks (DSBs) involving non-Ig genes in activated B cells. To determine what makes a DNA site a target for AID-induced DSBs, we identify off-target DSBs induced by AID by performing chromatin immunoprecipitation (ChIP) for Nbs1, a protein that binds DSBs, followed by deep sequencing (ChIP-Seq). We detect and characterize hundreds of off-target AID-dependent DSBs. Two types of tandem repeats are highly enriched within the Nbs1-binding sites: long CA repeats, which can form Z-DNA, and tandem pentamers containing the AID target hotspot WGCW. These tandem repeats are not nearly as enriched at AID-independent DSBs, which we also identified. Msh2, a component of the mismatch repair pathway and important for genome stability, increases off-target DSBs, similar to its effect on Ig switch region DSBs, which are required intermediates during CSR. Most of the off-target DSBs are two-ended, consistent with generation during G1 phase, similar to DSBs in Ig switch regions. However, a minority are one-ended, presumably due to conversion of single-strand breaks to DSBs during replication. One-ended DSBs are repaired by processes involving homologous recombination, including break-induced replication repair, which can lead to genome instability. Off-target DSBs, especially those present during S phase, can lead to chromosomal translocations, deletions and gene amplifications, resulting in the high frequency of B cell lymphomas derived from cells that express or have expressed AID.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Citidina Desaminase/fisiologia , Quebras de DNA de Cadeia Dupla , Proteínas Nucleares/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Imunoprecipitação da Cromatina , DNA Intergênico/genética , Proteínas de Ligação a DNA , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ligação Proteica , Baço/citologia , Baço/enzimologia , Sequências de Repetição em Tandem
6.
J Immunol ; 193(11): 5370-8, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25411432

RESUMO

IgH class switching occurs rapidly after activation of mature naive B cells, resulting in a switch from expression of IgM and IgD to expression of IgG, IgE, or IgA; this switch improves the ability of Abs to remove the pathogen that induces the humoral immune response. Class switching occurs by a deletional recombination between two switch regions, each of which is associated with a H chain constant region gene. Class switch recombination (CSR) is instigated by activation-induced cytidine deaminase, which converts cytosines in switch regions to uracils. The uracils are subsequently removed by two DNA-repair pathways, resulting in mutations, single-strand DNA breaks, and the double-strand breaks required for CSR. We discuss several aspects of CSR, including how CSR is induced, CSR in B cell progenitors, the roles of transcription and chromosomal looping in CSR, and the roles of certain DNA-repair enzymes in CSR.


Assuntos
Linfócitos B/fisiologia , Citidina Desaminase/metabolismo , Switching de Imunoglobulina , Cadeias Pesadas de Imunoglobulinas/genética , Animais , Reparo do DNA , Humanos , Ativação Linfocitária
7.
J Immunol ; 193(3): 1440-50, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24973444

RESUMO

Activation-induced cytidine deaminase (AID) is essential for class-switch recombination (CSR) and somatic hypermutation (SHM) of Ig genes. The AID C terminus is required for CSR, but not for S-region DNA double-strand breaks (DSBs) during CSR, and it is not required for SHM. AID lacking the C terminus (ΔAID) is a dominant negative (DN) mutant, because human patients heterozygous for this mutant fail to undergo CSR. In agreement, we show that ΔAID is a DN mutant when expressed in AID-sufficient mouse splenic B cells. To have DN function, ΔAID must have deaminase activity, suggesting that its ability to induce DSBs is important for the DN function. Supporting this hypothesis, Msh2-Msh6 have been shown to contribute to DSB formation in S regions, and we find in this study that Msh2 is required for the DN activity, because ΔAID is not a DN mutant in msh2(-/-) cells. Our results suggest that the DNA DSBs induced by ΔAID are unable to participate in CSR and might interfere with the ability of full-length AID to participate in CSR. We propose that ΔAID is impaired in its ability to recruit nonhomologous end joining repair factors, resulting in accumulation of DSBs that undergo aberrant resection. Supporting this hypothesis, we find that the S-S junctions induced by ΔAID have longer microhomologies than do those induced by full-length AID. In addition, our data suggest that AID binds Sµ regions in vivo as a monomer.


Assuntos
Citidina Desaminase/fisiologia , Reparo de Erro de Pareamento de DNA/imunologia , Rearranjo Gênico/imunologia , Animais , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Reparo de Erro de Pareamento de DNA/genética , Deleção de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Fragmentos de Peptídeos/genética , Cultura Primária de Células
8.
J Immunol ; 193(2): 931-9, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24935922

RESUMO

Activation-induced cytidine deaminase (AID) initiates a process generating DNA mutations and breaks in germinal center (GC) B cells that are necessary for somatic hypermutation and class-switch recombination. GC B cells can "tolerate" DNA damage while rapidly proliferating because of partial suppression of the DNA damage response by BCL6. In this study, we develop a model to study the response of mouse GC B cells to endogenous DNA damage. We show that the base excision repair protein apurinic/apyrimidinic endonuclease (APE) 2 protects activated B cells from oxidative damage in vitro. APE2-deficient mice have smaller GCs and reduced Ab responses compared with wild-type mice. DNA double-strand breaks are increased in the rapidly dividing GC centroblasts of APE2-deficient mice, which activate a p53-independent cell cycle checkpoint and a p53-dependent apoptotic response. Proliferative and/or oxidative damage and AID-dependent damage are additive stresses that correlate inversely with GC size in wild-type, AID-, and APE2-deficient mice. Excessive double-strand breaks lead to decreased expression of BCL6, which would enable DNA repair pathways but limit GC cell numbers. These results describe a nonredundant role for APE2 in the protection of GC cells from AID-independent damage, and although GC cells uniquely tolerate DNA damage, we find that the DNA damage response can still regulate GC size through pathways that involve p53 and BCL6.


Assuntos
Linfócitos B/imunologia , Citidina Desaminase/imunologia , Dano ao DNA , Endonucleases/imunologia , Centro Germinativo/imunologia , Animais , Apoptose/genética , Apoptose/imunologia , Linfócitos B/metabolismo , Ciclo Celular/genética , Ciclo Celular/imunologia , Proliferação de Células , Células Cultivadas , Citidina Desaminase/deficiência , Citidina Desaminase/genética , Quebras de DNA de Cadeia Dupla , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Endonucleases/deficiência , Endonucleases/genética , Citometria de Fluxo , Centro Germinativo/metabolismo , Switching de Imunoglobulina/genética , Switching de Imunoglobulina/imunologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Enzimas Multifuncionais , Estresse Oxidativo/imunologia , Proteínas Proto-Oncogênicas c-bcl-6 , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Hipermutação Somática de Imunoglobulina/genética , Hipermutação Somática de Imunoglobulina/imunologia , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/imunologia
9.
Proc Natl Acad Sci U S A ; 111(25): 9217-22, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24927551

RESUMO

Somatic hypermutation (SHM) of antibody variable region genes is initiated in germinal center B cells during an immune response by activation-induced cytidine deaminase (AID), which converts cytosines to uracils. During accurate repair in nonmutating cells, uracil is excised by uracil DNA glycosylase (UNG), leaving abasic sites that are incised by AP endonuclease (APE) to create single-strand breaks, and the correct nucleotide is reinserted by DNA polymerase ß. During SHM, for unknown reasons, repair is error prone. There are two APE homologs in mammals and, surprisingly, APE1, in contrast to its high expression in both resting and in vitro-activated splenic B cells, is expressed at very low levels in mouse germinal center B cells where SHM occurs, and APE1 haploinsufficiency has very little effect on SHM. In contrast, the less efficient homolog, APE2, is highly expressed and contributes not only to the frequency of mutations, but also to the generation of mutations at A:T base pair (bp), insertions, and deletions. In the absence of both UNG and APE2, mutations at A:T bp are dramatically reduced. Single-strand breaks generated by APE2 could provide entry points for exonuclease recruited by the mismatch repair proteins Msh2-Msh6, and the known association of APE2 with proliferating cell nuclear antigen could recruit translesion polymerases to create mutations at AID-induced lesions and also at A:T bp. Our data provide new insight into error-prone repair of AID-induced lesions, which we propose is facilitated by down-regulation of APE1 and up-regulation of APE2 expression in germinal center B cells.


Assuntos
Linfócitos B/metabolismo , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/biossíntese , Endonucleases/biossíntese , Regulação Enzimológica da Expressão Gênica/fisiologia , Centro Germinativo/metabolismo , Mutação , Hipermutação Somática de Imunoglobulina/fisiologia , Animais , Linfócitos B/citologia , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/genética , Centro Germinativo/citologia , Camundongos , Camundongos Knockout , Enzimas Multifuncionais , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo
10.
J Immunol ; 192(10): 4887-96, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24729610

RESUMO

Activation-induced cytidine deaminase (AID) initiates Ab class-switch recombination (CSR) in activated B cells resulting in exchanging the IgH C region and improved Ab effector function. During CSR, AID instigates DNA double-strand break (DSB) formation in switch (S) regions located upstream of C region genes. DSBs are necessary for CSR, but improper regulation of DSBs can lead to chromosomal translocations that can result in B cell lymphoma. The protein kinase ataxia telangiectasia mutated (ATM) is an important proximal regulator of the DNA damage response (DDR), and translocations involving S regions are increased in its absence. ATM phosphorylates H2AX, which recruits other DNA damage response (DDR) proteins, including mediator of DNA damage checkpoint 1 (Mdc1) and p53 binding protein 1 (53BP1), to sites of DNA damage. As these DDR proteins all function to promote repair and recombination of DSBs during CSR, we examined whether mouse splenic B cells deficient in these proteins would show alterations in S region DSBs when undergoing CSR. We find that in atm(-/-) cells Sµ DSBs are increased, whereas DSBs in downstream Sγ regions are decreased. We also find that mutations in the unrearranged Sγ3 segment are reduced in atm(-/-) cells. Our data suggest that ATM increases AID targeting and activity at downstream acceptor S regions during CSR and that in atm(-/-) cells Sµ DSBs accumulate as they lack a recombination partner.


Assuntos
Citidina Desaminase/imunologia , Rearranjo Gênico do Linfócito B/imunologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/imunologia , Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/imunologia , Citidina Desaminase/genética , Dano ao DNA/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Rearranjo Gênico do Linfócito B/genética , Histonas/genética , Histonas/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Camundongos , Camundongos Knockout , Fosforilação/genética , Fosforilação/imunologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
11.
DNA Repair (Amst) ; 12(12): 1087-93, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24084171

RESUMO

During somatic hypermutation (SHM) of antibody variable (V) region genes, activation-induced cytidine deaminase (AID) converts dC to dU, and dUs can either be excised by uracil DNA glycosylase (UNG), by mismatch repair, or replicated over. If UNG excises the dU, the abasic site could be cleaved by AP-endonuclease (APE), introducing the single-strand DNA breaks (SSBs) required for generating mutations at A:T bp, which are known to depend upon mismatch repair and DNA Pol η. DNA Pol ß or λ could instead repair the lesion correctly. To assess the involvement of Pols ß and λ in SHM of antibody genes, we analyzed mutations in the VDJh4 3' flanking region in Peyer's patch germinal center (GC) B cells from polß(-/-)polλ(-/-), polλ(-/-), and polß(-/-) mice. We find that deficiency of either or both polymerases results in a modest but significant decrease in V region SHM, with Pol ß having a greater effect, but there is no effect on mutation specificity, suggesting they have no direct role in SHM. Instead, the effect on SHM appears to be due to a role for these enzymes in GC B cell proliferation or viability. The results suggest that the BER pathway is not important during V region SHM for generating mutations at A:T bp. Furthermore, this implies that most of the SSBs required for Pol η to enter and create A:T mutations are likely generated during replication instead. These results contrast with the inhibitory effect of Pol ß on mutations at the Ig Sµ locus, Sµ DSBs and class switch recombination (CSR) reported previously. We show here that B cells deficient in Pol λ or both Pol ß and λ proliferate normally in culture and undergo slightly elevated CSR, as shown previously for Pol ß-deficient B cells.


Assuntos
DNA Polimerase beta/metabolismo , Imunoglobulina G/genética , Região Variável de Imunoglobulina/genética , Taxa de Mutação , Hipermutação Somática de Imunoglobulina/genética , Animais , Linfócitos B/metabolismo , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Embrião de Mamíferos , Feminino , Deleção de Genes , Switching de Imunoglobulina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação Puntual
12.
PLoS One ; 7(4): e36061, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22536455

RESUMO

During activation of B cells to undergo class switching, B cell metabolism is increased, and levels of reactive oxygen species (ROS) are increased. ROS can oxidize DNA bases resulting in substrates for the DNA glycosylases Ogg1 and Nth1. Ogg1 and Nth1 excise oxidized bases, and nick the resulting abasic sites, forming single-strand DNA breaks (SSBs) as intermediates during the repair process. In this study, we asked whether splenic B cells from mice deficient in these two enzymes would show altered class switching and decreased DNA breaks in comparison with wild-type mice. As the c-myc gene frequently recombines with the IgH S region in B cells induced to undergo class switching, we also analyzed the effect of deletion of these two glycosylases on DSBs in the c-myc gene. We did not detect a reduction in S region or c-myc DSBs or in class switching in splenic B cells from Ogg1- or Nth1-deficient mice or from mice deficient in both enzymes.


Assuntos
Linfócitos B/imunologia , DNA Glicosilases/deficiência , Desoxirribonuclease (Dímero de Pirimidina)/deficiência , Switching de Imunoglobulina , Baço/citologia , Animais , Linfócitos B/enzimologia , Proliferação de Células , Células Cultivadas , Quebras de DNA de Cadeia Dupla , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Desoxirribonuclease (Dímero de Pirimidina)/genética , Técnicas de Inativação de Genes , Genes myc , Cadeias Pesadas de Imunoglobulinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Recombinação Genética , Transcrição Gênica
13.
J Immunol ; 187(5): 2464-75, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21804017

RESUMO

Activation-induced cytidine deaminase (AID) is induced in B cells during an immune response and is essential for both class-switch recombination (CSR) and somatic hypermutation of Ab genes. The C-terminal 10 aa of AID are required for CSR but not for somatic hypermutation, although their role in CSR is unknown. Using retroviral transduction into mouse splenic B cells, we show that the C terminus is not required for switch (S) region double-strand breaks (DSBs) and therefore functions downstream of DSBs. Using chromatin immunoprecipitation, we show that AID binds cooperatively with UNG and the mismatch repair proteins Msh2-Msh6 to Ig Sµ and Sγ3 regions, and this depends on the C terminus and the deaminase activity of AID. We also show that mismatch repair does not contribute to the efficiency of CSR in the absence of the AID C terminus. Although it has been demonstrated that both UNG and Msh2-Msh6 are important for introduction of S region DSBs, our data suggest that the ability of AID to recruit these proteins is important for DSB resolution, perhaps by directing the S region DSBs toward accurate and efficient CSR via nonhomologous end joining.


Assuntos
Citidina Desaminase/metabolismo , Proteínas de Ligação a DNA/metabolismo , Switching de Imunoglobulina/fisiologia , Região de Troca de Imunoglobulinas/fisiologia , Proteína 2 Homóloga a MutS/metabolismo , Uracila-DNA Glicosidase/metabolismo , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Separação Celular , Imunoprecipitação da Cromatina , Citidina Desaminase/química , Citometria de Fluxo , Imunoglobulina G , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
J Immunol ; 186(4): 1943-50, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21228350

RESUMO

B cell development involves rapid cellular proliferation, gene rearrangements, selection, and differentiation, and it provides a powerful model to study DNA repair processes in vivo. Analysis of the contribution of the base excision repair pathway in lymphocyte development has been lacking primarily owing to the essential nature of this repair pathway. However, mice deficient for the base excision repair enzyme, apurinic/apyrimidinic endonuclease 2 (APE2) protein develop relatively normally, but they display defects in lymphopoiesis. In this study, we present an extensive analysis of bone marrow hematopoiesis in mice nullizygous for APE2 and find an inhibition of the pro-B to pre-B cell transition. We find that APE2 is not required for V(D)J recombination and that the turnover rate of APE2-deficient progenitor B cells is nearly normal. However, the production rate of pro- and pre-B cells is reduced due to a p53-dependent DNA damage response. FACS-purified progenitors from APE2-deficient mice differentiate normally in response to IL-7 in in vitro stromal cell cocultures, but pro-B cells show defective expansion. Interestingly, APE2-deficient mice show a delay in recovery of B lymphocyte progenitors following bone marrow depletion by 5-fluorouracil, with the pro-B and pre-B cell pools still markedly decreased 2 wk after a single treatment. Our data demonstrate that APE2 has an important role in providing protection from DNA damage during lymphoid development, which is independent from its ubiquitous and essential homolog APE1.


Assuntos
Subpopulações de Linfócitos B/enzimologia , Subpopulações de Linfócitos B/imunologia , Endonucleases/fisiologia , Fluoruracila/administração & dosagem , Células-Tronco Hematopoéticas/enzimologia , Subpopulações de Linfócitos/enzimologia , Linfopoese/imunologia , Animais , Subpopulações de Linfócitos B/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Dano ao DNA/imunologia , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Reparo do DNA/imunologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/fisiologia , Endonucleases/deficiência , Endonucleases/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Depleção Linfocítica , Subpopulações de Linfócitos/efeitos dos fármacos , Subpopulações de Linfócitos/imunologia , Linfopoese/efeitos dos fármacos , Linfopoese/genética , Camundongos , Camundongos Knockout , Enzimas Multifuncionais , Mielopoese/efeitos dos fármacos , Mielopoese/genética , Mielopoese/imunologia , Proteína Supressora de Tumor p53/fisiologia
15.
Nucleic Acids Res ; 39(8): 3156-65, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21172930

RESUMO

DNA repair is required to maintain genome stability in stem cells and early embryos. At critical junctures, oxidative damage to DNA requires the base excision repair (BER) pathway. Since early zebrafish embryos lack the major polymerase in BER, DNA polymerase ß, repair proceeds via replicative polymerases, even though there is ample polb mRNA. Here, we report that Polb protein fails to appear at the appropriate time in development when AP endonuclease 1 (Apex), the upstream protein in BER, is knocked down. Because polb contains a Creb1 binding site, we examined whether knockdown of Apex affects creb1. Apex knockdown results in loss of Creb1 and Creb complex members but not Creb1 phosphorylation. This effect is independent of p53. Although both apex and creb1 mRNA rescue Creb1 and Polb after Apex knockdown, Apex is not a co-activator of creb1 transcription. This observation has broad significance, as similar results occur when Apex is inhibited in B cells from apex(+/-) mice. These results describe a novel regulatory circuit involving Apex, Creb1 and Polb and provide a mechanism for lethality of Apex loss in higher eukaryotes.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , DNA Polimerase beta/metabolismo , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Alquilantes/farmacologia , Animais , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , DNA Polimerase beta/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/fisiologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Endogâmicos C57BL , Proteína Supressora de Tumor p53/metabolismo
16.
J Immunol ; 184(11): 6177-87, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20483782

RESUMO

Ig class switch recombination (CSR) occurs in activated mature B cells, and causes an exchange of the IgM isotype for IgG, IgE, or IgA isotypes, which increases the effectiveness of the humoral immune response. DNA ds breaks in recombining switch (S) regions, where CSR occurs, are required for recombination. Activation-induced cytidine deaminase initiates DNA ds break formation by deamination of cytosines in S regions. This reaction requires reactive oxygen species (ROS) intermediates, such as hydroxyl radicals. In this study we show that the ROS scavenger N-acetylcysteine inhibits CSR. We also demonstrate that IFN-gamma treatment, which is used to induce IgG2a switching, increases intracellular ROS levels, and activates p53 in switching B cells, and show that p53 inhibits IgG2a class switching through its antioxidant-regulating function. Finally, we show that p53 inhibits DNA breaks and mutations in S regions in B cells undergoing CSR, suggesting that p53 inhibits the activity of activation-induced cytidine deaminase.


Assuntos
Antioxidantes/metabolismo , Switching de Imunoglobulina/genética , Imunoglobulina G/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Western Blotting , Separação Celular , Citidina Desaminase/metabolismo , Quebras de DNA de Cadeia Dupla , Citometria de Fluxo , Imunoglobulina G/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/imunologia
18.
J Immunol ; 183(2): 1222-8, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19553545

RESUMO

The Msh2 mismatch repair (MMR) protein is critical for class switch recombination (CSR) events that occur in mice that lack the Smu tandem repeat (SmuTR) region (SmuTR(-/-) mice). The pattern of microhomology among switch junction sites in Msh2-deficient mice is also dependent on the presence or absence of SmuTR sequences. It is not known whether these CSR effects reflect an individual function of Msh2 or the function of Msh2 within the MMR machinery. In the absence of the SmuTR sequences, Msh2 deficiency nearly ablates CSR. We now show that Mlh1 or Exo1 deficiencies also eliminate CSR in the absence of the SmuTR. Furthermore, in SmuTR(-/-) mice, deficiencies of Mlh1 or Exo1 result in increased switch junction microhomology as has also been seen with Msh2 deficiency. These results are consistent with a CSR model in which the MMR machinery is important in processing DNA nicks to produce double-stranded breaks, particularly in sequences where nicks are infrequent. We propose that double-stranded break paucity in MMR-deficient mice leads to increased use of an alternative joining pathway where microhomologies are important for CSR break ligation. Interestingly, when the SmuTR region is present, deficiency of Msh2 does not lead to the increased microhomology seen with Mlh1 or Exo1 deficiencies, suggesting that Msh2 might have an additional function in CSR. It is also possible that the inability to initiate MMR in the absence of Msh2 results in CSR junctions with less microhomology than joinings that occur when MMR is initiated but then proceeds abnormally due to Mlh1 or Exo1 deficiencies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Exodesoxirribonucleases/deficiência , Switching de Imunoglobulina/genética , Região de Troca de Imunoglobulinas , Proteína 2 Homóloga a MutS/deficiência , Proteínas Nucleares/deficiência , Sequências de Repetição em Tandem , Animais , Linfócitos B/imunologia , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Reparo do DNA , Região de Troca de Imunoglobulinas/genética , Camundongos , Camundongos Knockout , Proteína 1 Homóloga a MutL
19.
Philos Trans R Soc Lond B Biol Sci ; 364(1517): 645-52, 2009 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-19010771

RESUMO

Immunoglobulin class switch recombination (CSR) occurs by an intrachromosomal deletion requiring generation of double-stranded DNA breaks (DSBs) in immunoglobulin switch region DNA. The initial steps of DSB formation have been elucidated: cytosine deamination by activation-induced cytidine deaminase (AID) and the generation of abasic sites by uracil-DNA glycosylase (UNG). We show that abasic sites are converted into single-strand breaks (SSBs) by apurinic/apyrimidinic endonucleases (APE1 and APE2). If SSBs are near to each other on opposite strands, they will generate DSBs; but if distal from each other, mismatch repair appears to be required to generate DSBs. The resulting S region DSBs occur at dC residues that are preferentially targeted by AID. We also investigate whether DNA polymerase beta, which correctly repairs SSBs resulting from APE activity, attempts to repair the breaks during CSR. We find that although polymerase beta does attempt to repair S region DNA breaks in switching B cells, the frequency of AID-instigated breaks appears to outnumber the SSBs repaired correctly by polymerase beta, and thus some DSBs and mutations are generated. We also show that the S region DSBs are introduced and resolved during the G1 phase of the cell cycle.


Assuntos
Quebras de DNA , Reparo de Erro de Pareamento de DNA/imunologia , DNA Polimerase beta/imunologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/imunologia , Switching de Imunoglobulina/imunologia , Região de Troca de Imunoglobulinas/genética , Reparo de Erro de Pareamento de DNA/genética , DNA Polimerase beta/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Endonucleases , Fase G1/imunologia , Switching de Imunoglobulina/genética , Modelos Genéticos , Enzimas Multifuncionais
20.
J Immunol ; 181(12): 8450-9, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19050263

RESUMO

When B cells are activated after immunization or infection, they exchange the gene encoding the Ig H chain C region by class switch recombination (CSR). CSR generally occurs by an intrachromosomal deletional recombination within switch (S) region sequences. However, approximately 10% of CSR events occur between chromosome homologs (trans- or interallele CSR), suggesting that the homologous chromosomes are aligned during CSR. Because the Mut S homolog 4 (Msh4) and Msh5 bind to Holliday junctions and are required for homologous recombination during meiosis in germ cells, we hypothesized these proteins might be involved in trans-chromosomal CSR (trans-CSR). Indeed, Msh4-Msh5 has recently been suggested to have a role in CSR. However, we find a large variety of alternative splice variants of Msh5 mRNA in splenic B cells rather than the full-length form found in testis. Most of these mRNAs are unlikely to be stable, suggesting that Msh5 might not be functional. Furthermore, we find that msh5 nullizygous B cells undergo CSR normally, have unaltered levels of trans-CSR, normal levels of DNA breaks in the Smu region, and normal S-S junctions. We also show that the S-S junctions from cis- and trans-CSR events have similar lengths of junctional microhomology, suggesting trans-CSR occurs by nonhomologous end joining as does intrachromosome (cis)-CSR. From these data, we conclude that Msh5 does not participate in CSR.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Switching de Imunoglobulina/genética , Recombinação Genética/imunologia , Processamento Alternativo/genética , Processamento Alternativo/imunologia , Substituição de Aminoácidos/genética , Substituição de Aminoácidos/imunologia , Animais , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA/biossíntese , Homologia de Sequência do Ácido Nucleico , Baço/citologia , Baço/imunologia , Baço/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...